50 resultados para grape metabolites


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although pharmaceutical metabolites are found in the aquatic environment, their toxicity on living organisms is poorly studied in general. Endoxifen and 4-hydroxy-tamoxifen (4OHTam) are two metabolites of the widely used anticancer drug tamoxifen for the prevention and treatment of breast cancers. Both metabolites have a high pharmacological potency in vertebrates, attributing prodrug characteristics to tamoxifen. Tamoxifen and its metabolites are body-excreted by patients, and the parent compound is found in sewage treatment plan effluents and natural waters. The toxicity of these potent metabolites on non-target aquatic species is unknown, which forces environmental risk assessors to predict their toxicity on aquatic species using knowledge on the parent compounds. Therefore, the aim of this study was to assess the sensitivity of two generations of the freshwater microcrustacean Daphnia pulex towards 4OHTam and endoxifen. Two chronic tests of 4OHTam and endoxifen were run in parallel and several endpoints were assessed. The results show that the metabolites 4OHTam and endoxifen induced reproductive and survival effects. For both metabolites, the sensitivity of D. pulex increased in the second generation. The intrinsic rate of natural increase (r) decreased with increasing 4OHTam and endoxifen concentrations. The No-Observed Effect Concentrations (NOECs) calculated for the reproduction of the second generation exposed to 4OHTam and endoxifen were <1.8 and 4.3μg/L, respectively, whereas the NOECs that were calculated for the intrinsic rate of natural increase were <1.8 and 0.4μg/L, respectively. Our study raises questions about prodrug and active metabolites in environmental toxicology assessments of pharmaceuticals. Our findings also emphasize the importance of performing long-term experiments and considering multi-endpoints instead of the standard reproduction outcome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Systolic blood pressure (BP) has been associated with urinary caffeine and its metabolites such as paraxanthine and theophylline. Caffeine and caffeine metabolites could influence arterial pulse pressure (PP) via sympathomimetic effects, smooth muscle relaxation, and phosphodiesterase inhibition. The purpose of this analysis was to explore the association of ambulatory PP with urinary caffeine and its related metabolites in a large population-based sample. DESIGN AND METHOD: Families were randomly selected from the general population of three Swiss cities (2009-2013). Ambulatory BP monitoring was conducted using validated Diasys Integra devices. PP was defined as the difference between the systolic and diastolic ambulatory BP. Urinary caffeine, paraxanthine, theophylline, and theobromine excretions were measured in 24 h urine using ultra-high performance liquid chromatography tandem mass spectrometry. Urinary excretions were log-transformed to satisfy regression assumptions. We used linear mixed models to explore the associations of urinary caffeine and caffeine metabolite excretions with 24-hour, day- and night-time PP while adjusting for major confounders. RESULTS: The 836 participants (48.9% men) included in this analysis had mean (±SD) age of 47.8 (±17.5), and mean 24-hour systolic and diastolic BP of 120.1 mmHg (±13.9) and 78.0 (±8.6). Except theobromine, log transformed urinary caffeine and caffeine metabolite excretions were associated negatively with 24-hour, daytime and night-time ambulatory PP. 24-hour, daytime, and night-time ambulatory PP decreased by -0.804 mmHg (SE, 0.209), -0.749 (0.215), and -0.968 (0.243) (all P values <0.005), for each doubling excretion of caffeine. Strong negative associations with night-time ambulatory PP were observed for paraxanthine and theophylline.(Figure is included in full-text article.) CONCLUSIONS: : The negative associations of PP with caffeine, paraxanthine, and theophylline excretions suggest that caffeine and its metabolites do lower BP, possibly by modifying arterial stiffness.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Efavirenz (EFV) is principally metabolized by CYP2B6 to 8-hydroxy-efavirenz (8OH-EFV) and to a lesser extent by CYP2A6 to 7-hydroxy-efavirenz (7OH-EFV). So far, most metabolite profile analyses have been restricted to 8OH-EFV, 7OH-EFV, and EFV-N-glucuronide, even though these metabolites represent a minor percentage of EFV metabolites present in vivo. We have performed a quantitative phase I and II metabolite profile analysis by tandem mass spectrometry of plasma, cerebrospinal fluid (CSF), and urine samples in 71 human immunodeficiency virus patients taking efavirenz, prior to and after enzymatic (glucuronidase and sulfatase) hydrolysis. We have shown that phase II metabolites constitute the major part of the known circulating efavirenz species in humans. The 8OH-EFV-glucuronide (gln) and 8OH-EFV-sulfate (identified for the first time) in humans were found to be 64- and 7-fold higher than the parent 8OH-EFV, respectively. In individuals (n = 67) genotyped for CYP2B6, 2A6, and CYP3A metabolic pathways, 8OH-EFV/EFV ratios in plasma were an index of CYP2B6 phenotypic activity (P < 0.0001), which was also reflected by phase II metabolites 8OH-EFV-glucuronide/EFV and 8OH-EFV-sulfate/EFV ratios. Neither EFV nor 8OH-EFV, nor any other considered metabolites in plasma were associated with an increased risk of central nervous system (CNS) toxicity. In CSF, 8OH-EFV levels were not influenced by CYP2B6 genotypes and did not predict CNS toxicity. The phase II metabolites 8OH-EFV-gln, 8OH-EFV-sulfate, and 7OH-EFV-gln were present in CSF at 2- to 9-fold higher concentrations than 8OH-EFV. The potential contribution of known and previously unreported EFV metabolites in CSF to the neuropsychological effects of efavirenz needs to be further examined in larger cohort studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Autologous blood transfusion (ABT) efficiently increases sport performance and is the most challenging doping method to detect. Current methods for detecting this practice center on the plasticizer di(2-ethlyhexyl) phthalate (DEHP), which enters the stored blood from blood bags. Quantification of this plasticizer and its metabolites in urine can detect the transfusion of autologous blood stored in these bags. However, DEHP-free blood bags are available on the market, including n-butyryl-tri-(n-hexyl)-citrate (BTHC) blood bags. Athletes may shift to using such bags to avoid the detection of urinary DEHP metabolites. STUDY DESIGN AND METHODS: A clinical randomized double-blinded two-phase study was conducted of healthy male volunteers who underwent ABT using DEHP-containing or BTHC blood bags. All subjects received a saline injection for the control phase and a blood donation followed by ABT 36 days later. Kinetic excretion of five urinary DEHP metabolites was quantified with liquid chromatography coupled with tandem mass spectrometry. RESULTS: Surprisingly, considerable levels of urinary DEHP metabolites were observed up to 1 day after blood transfusion with BTHC blood bags. The long-term metabolites mono-(2-ethyl-5-carboxypentyl) phthalate and mono-(2-carboxymethylhexyl) phthalate were the most sensitive biomarkers to detect ABT with BTHC blood bags. Levels of DEHP were high in BTHC bags (6.6%), the tubing in the transfusion kit (25.2%), and the white blood cell filter (22.3%). CONCLUSIONS: The BTHC bag contained DEHP, despite being labeled DEHP-free. Urinary DEHP metabolite measurement is a cost-effective way to detect ABT in the antidoping field even when BTHC bags are used for blood storage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MetaNetX is a repository of genome-scale metabolic networks (GSMNs) and biochemical pathways from a number of major resources imported into a common namespace of chemical compounds, reactions, cellular compartments-namely MNXref-and proteins. The MetaNetX.org website (http://www.metanetx.org/) provides access to these integrated data as well as a variety of tools that allow users to import their own GSMNs, map them to the MNXref reconciliation, and manipulate, compare, analyze, simulate (using flux balance analysis) and export the resulting GSMNs. MNXref and MetaNetX are regularly updated and freely available.