49 resultados para gradient chamber
Resumo:
BACKGROUND: Magnetic resonance imaging (MRI) of patients with conventional implantable cardioverter-defibrillators (ICD) is contraindicated. OBJECTIVES: This multicenter, randomized trial evaluated safety and efficacy of a novel ICD system specially designed for full-body MRI without restrictions on heart rate or pacing dependency. The primary safety objective was >90% freedom from MRI-related events composite endpoint within 30 days post-MRI. The primary efficacy endpoints were ventricular pacing capture threshold and ventricular sensing amplitude. METHODS: Subjects received either a single- or dual-chamber ICD. In a 2:1 randomization, subjects either underwent MRI at 1.5-T of the chest, cervical, and head regions to maximize radiofrequency exposure up to 2 W/kg specific absorption rate and gradient field exposure to 200 T/m/s per axis (MRI group, n = 175), or they underwent a 1-h waiting period without MRI (control group, n = 88). A subset of MRI patients underwent ventricular fibrillation induction testing post-MRI to characterize defibrillation function. RESULTS: In 42 centers, 275 patients were enrolled (76% male, age 60.4 ± 13.8 years). The safety endpoint was met with 100% freedom from the composite endpoint (p < 0.0001). Both efficacy endpoints were met with minimal differences in the proportion of MRI and control patients who demonstrated a ≤0.5 V increase in ventricular pacing capture threshold (100% MRI vs. 98.8% control, noninferiority p < 0.0001) or a ≤50% decrease in R-wave amplitude (99.3% MRI vs. 98.8% control, noninferiority p = 0.0001). A total of 34 ventricular tachyarrhythmia/ventricular fibrillation episodes (20 induced; 14 spontaneous) occurred in 24 subjects post-MRI, with no observed effect on sensing, detection, or treatment. CONCLUSIONS: This is the first randomized clinical study of an ICD system designed for full-body MRI at 1.5-T. These data support that the system is safe and the MRI scan does not adversely affect electrical performance or efficacy. (Confirmatory Clinical Trial of the Evera MRI System for Conditionally-Safe MRI Access; NCT02117414).
Resumo:
Concentration gradients provide spatial information for tissue patterning and cell organization, and their robustness under natural fluctuations is an evolutionary advantage. In rod-shaped Schizosaccharomyces pombe cells, the DYRK-family kinase Pom1 gradients control cell division timing and placement. Upon dephosphorylation by a Tea4-phosphatase complex, Pom1 associates with the plasma membrane at cell poles, where it diffuses and detaches upon auto-phosphorylation. Here, we demonstrate that Pom1 auto-phosphorylates intermolecularly, both in vitro and in vivo, which confers robustness to the gradient. Quantitative imaging reveals this robustness through two system's properties: The Pom1 gradient amplitude is inversely correlated with its decay length and is buffered against fluctuations in Tea4 levels. A theoretical model of Pom1 gradient formation through intermolecular auto-phosphorylation predicts both properties qualitatively and quantitatively. This provides a telling example where gradient robustness through super-linear decay, a principle hypothesized a decade ago, is achieved through autocatalysis. Concentration-dependent autocatalysis may be a widely used simple feedback to buffer biological activities.
Resumo:
Aim: Obesity and smoking are major CVD risk factors and may be associated with other unfavourable lifestyle behaviours. Our aim was to investigate the significance of obesity, heavy smoking, and both combined in terms of prevalence trends and their relationship with other lifestyle factors. Methods: We used data from the population-based cross-sectional Swiss Health Survey (5 waves, 1992-2012) comprising 85,575 individuals aged 18 years. Height, weight, and smoking status were self-reported. We used multinomial logistic regression to analyse differences in lifestyle for the combinations of BMI category and smoking status, focusing on obese and heavy smokers. We defined normal-weight never smokers as reference.
Resumo:
AimUnderstanding the relative contribution of diversification rates (speciation and extinction) and dispersal in the formation of the latitudinal diversity gradient - the decrease in species richness with increasing latitude - is a main goal of biogeography. The mammalian order Carnivora, which comprises 286 species, displays the traditional latitudinal diversity gradient seen in almost all mammalian orders. Yet the processes driving high species richness in the tropics may be fundamentally different in this group from that in other mammalian groups. Indeed, a recent study suggested that in Carnivora, unlike in all other major mammalian orders, net diversification rates are not higher in the tropics than in temperate regions. Our goal was thus to understand the reasons why there are more species of Carnivora in the tropics. LocationWorld-wide. MethodsWe reconstructed the biogeographical history of Carnivora using a time-calibrated phylogeny of the clade comprising all terrestrial species and dispersal-extinction-cladogenesis models. We also analysed a fossil dataset of carnivoran genera to examine how the latitudinal distribution of Carnivora varied through time. ResultsOur biogeographical analyses suggest that Carnivora originated in the East Palaearctic (i.e. Central Asia, China) in the early Palaeogene. Multiple independent lineages dispersed to low latitudes following three main paths: toward Africa, toward India/Southeast Asia and toward South America via the Bering Strait. These dispersal events were probably associated with local extinctions at high latitudes. Fossil data corroborate a high-latitude origin of the group, followed by late dispersal events toward lower latitudes in the Neogene. Main conclusionsUnlike most other mammalian orders, which originated and diversified at low latitudes and dispersed out of the tropics', Carnivora originated at high latitudes, and subsequently dispersed southward. Our study provides an example of combining phylogenetic and fossil data to understand the generation and maintenance of global-scale geographical variations in species richness.