530 resultados para glucagon receptor
Resumo:
The majority of diseases in the retina are caused by genetic mutations affecting the development and function of photoreceptor cells. The transcriptional networks directing these processes are regulated by genes such as nuclear hormone receptors. The nuclear hormone receptor gene Rev-erb alpha/Nr1d1 has been widely studied for its role in the circadian cycle and cell metabolism, however its role in the retina is unknown. In order to understand the role of Rev-erb alpha/Nr1d1 in the retina, we evaluated the effects of loss of Nr1d1 to the developing retina and its co-regulation with the photoreceptor-specific nuclear receptor gene Nr2e3 in the developing and mature retina. Knock-down of Nr1d1 expression in the developing retina results in pan-retinal spotting and reduced retinal function by electroretinogram. Our studies show that NR1D1 protein is co-expressed with NR2E3 in the outer neuroblastic layer of the developing mouse retina. In the adult retina, NR1D1 is expressed in the ganglion cell layer and is co-expressed with NR2E3 in the outer nuclear layer, within rods and cones. Several genes co-targeted by NR2E3 and NR1D1 were identified that include: Nr2c1, Recoverin, Rgr, Rarres2, Pde8a, and Nupr1. We examined the cyclic expression of Nr1d1 and Nr2e3 over a twenty-four hour period and observed that both nuclear receptors cycle in a similar manner. Taken together, these studies reveal a novel role for Nr1d1, in conjunction with its cofactor Nr2e3, in regulating transcriptional networks critical for photoreceptor development and function.
Resumo:
OBJECTIVE: To compare the acute and sustained renal hemodynamic effects on hypertensive patients of 100 mg irbesartan and 20 mg enalapril each once daily. PATIENTS: Twenty patients (aged 35-70 years) with uncomplicated, mild-to-moderate essential hypertension and normal serum creatinine levels completed this study. STUDY DESIGN: After random allocation to treatment (n=10 per group), administration schedule (morning or evening) was determined by further random allocation, with crossover of schedules after 6 weeks' therapy. Treatment and administration assignments were double-blind. Twenty-four-hour ambulatory blood pressure was monitored before and after 6 and 12 weeks of therapy. Renal hemodynamics were determined on the first day of drug administration and 12 and 24 h after the last dose during chronic treatment. RESULTS: Administration of each antihypertensive agent induced a renal vasodilatation with no significant change in glomerular filtration rate. However, the time course appeared to differ: irbesartan had no significant acute effect 4 h after the first dose, but during chronic administration a renal vasodilatory response was found 12 and 24 h after the dose; enalapril was effective acutely and 12 h after administration, but no residual effect was found 24 h after the dose. Both antihypertensive agents lowered mean ambulatory blood pressure effectively, with no significant difference between treatments or between administration schedules (morning versus evening). CONCLUSIONS: Irbesartan and enalapril have comparable effects on blood pressure and renal hemodynamics in hypertensive patients with normal renal functioning. However, the time profiles of the renal effects appear to differ, which might be important for long-term renoprotective effects.
Resumo:
We assessed the blockade of the renin-angiotensin system (RAS) achieved with 2 angiotensin (Ang) antagonists given either alone at different doses or with an ACE inhibitor. First, 20 normotensive subjects were randomly assigned to 100 mg OD losartan (LOS) or 80 mg OD telmisartan (TEL) for 1 week; during another week, the same doses of LOS and TEL were combined with 20 mg OD lisinopril. Then, 10 subjects were randomly assigned to 200 mg OD LOS and 160 mg OD TEL for 1 week and 100 mg BID LOS and 80 mg BID TEL during the second week. Blockade of the RAS was evaluated with the inhibition of the pressor effect of exogenous Ang I, an ex vivo receptor assay, and the changes in plasma Ang II. Trough blood pressure response to Ang I was blocked by 35+/-16% (mean+/-SD) with 100 mg OD LOS and by 36+/-13% with 80 mg OD TEL. When combined with lisinopril, blockade was 76+/-7% with LOS and 79+/-9% with TEL. With 200 mg OD LOS, trough blockade was 54+/-14%, but with 100 mg BID it increased to 77+/-8% (P<0.01). Telmisartan (160 mg OD and 80 mg BID) produced a comparable effect. Thus, at their maximal recommended doses, neither LOS nor TEL blocks the RAS for 24 hours; hence, the addition of an ACE inhibitor provides an additional blockade. A 24-hour blockade can be achieved with an angiotensin antagonist alone, provided higher doses or a BID regimen is used.
Resumo:
Anti-N-methyl-d-aspartate (anti-NMDA) receptor encephalitis likely has a wider clinical spectrum than previously recognized. This article reports a previously healthy 16-year-old girl who was diagnosed with anti-NMDA receptor encephalitis 3 months after onset of severe depression with psychotic features. She had no neurological manifestations, and cerebral magnetic resonance imaging (MRI) was normal. Slow background on electroencephalogram and an oligoclonal band in the cerebrospinal fluid prompted the search for anti-NMDA receptor antibodies. She markedly improved over time but remained with mild neuropsychological sequelae after a trial of late immunotherapy. Only a high index of suspicion enables recognition of the milder forms of the disease masquerading as primary psychiatric disorders.
Resumo:
The t(15;17) chromosomal translocation, specific for acute promyelocytic leukemia (APL), fuses the PML gene to the retinoic acid receptor alpha (RAR alpha) gene, resulting in expression of a PML-RAR alpha hybrid protein. In this report, we analyzed the nature of PML-RAR alpha-containing complexes in nuclear protein extracts of t(15;17)-positive cells. We show that endogenous PML-RAR alpha can bind to DNA as a homodimer, in contrast to RAR alpha that requires the retinoid X receptor (RXR) dimerization partner. In addition, these cells contain oligomeric complexes of PML-RAR alpha and endogenous RXR. Treatment with retinoic acid results in a decrease of PML-RAR alpha protein levels and, as a consequence, of DNA binding by the different complexes. Using responsive elements from various hormone signaling pathways, we show that PML-RAR alpha homodimers have altered DNA-binding characteristics when compared to RAR alpha-RXR alpha heterodimers. In transfected Drosophila SL-3 cells that are devoid of endogenous retinoid receptors PML-RAR alpha inhibits transactivation by RAR alpha-RXR alpha heterodimers in a dominant fashion. In addition, we show that both normal retinoid receptors and the PML-RAR alpha hybrid bind and activate the peroxisome proliferator-activated receptor responsive element from the Acyl-CoA oxidase gene, indicating that retinoids and peroxisome proliferator receptors may share common target genes. These properties of PML-RAR alpha may contribute to the transformed phenotype of APL cells.
Resumo:
Knockout mice lacking the alpha-1b adrenergic receptor were tested in behavioral experiments. Reaction to novelty was first assessed in a simple test in which the time taken by the knockout mice and their littermate controls to enter a second compartment was compared. Then the mice were tested in an open field to which unknown objects were subsequently added. Special novelty was introduced by moving one of the familiar objects to another location in the open field. Spatial behavior and memory were further studied in a homing board test, and in the water maze. The alpha-1b knockout mice showed an enhanced reactivity to new situations. They were faster to enter the new environment, covered longer paths in the open field, and spent more time exploring the new objects. They reacted like controls to modification inducing spatial novelty. In the homing board test, both the knockout mice and the control mice seemed to use a combination of distant visual and proximal olfactory cues, showing place preference only if the two types of cues were redundant. In the water maze the alpha-1b knockout mice were unable to learn the task, which was confirmed in a probe trial without platform. They were perfectly able, however, to escape in a visible platform procedure. These results confirm previous findings showing that the noradrenergic pathway is important for the modulation of behaviors such as reaction to novelty and exploration, and suggest that this is mediated, at least partly, through the alpha-1b adrenergic receptors. The lack of alpha-1b adrenergic receptors in spatial orientation does not seem important in cue-rich tasks but may interfere with orientation in situations providing distant cues only.
Resumo:
In this study, we describe a patient with a phenotype of complete hypogonadotropic hypogonadism who presented primary failure of pulsatile GnRH therapy, but responded to exogenous gonadotropin administration. This patient bore a novel point mutation (T for A) at codon 168 of the gene encoding the GnRH receptor (GnRH-R), resulting in a serine to arginine change in the fourth transmembrane domain of the receptor. This novel mutation was present in the homozygous state in the patient, whereas it was in the heterozygous state in both phenotypically normal parents. When introduced into the complementary DNA coding for the GnRH-R, this mutation resulted in the complete loss of the receptor-mediated signaling response to GnRH. In conclusion, we report the first mutation of the GnRH-R gene that can induce a total loss of function of this receptor and is associated with a phenotype of complete hypogonadotropic hypogonadism.
Resumo:
Experimental evidence indicates a role of the N-methyl-D-aspartate receptor in the pathogenesis of brain injury occurring during cardiac surgery with cardiopulmonary bypass (CPB). Dextromethorphan is a noncompetitive antagonist of this receptor with a favorable safety profile. Thirteen children age 3-36 months undergoing cardiac surgery with expected CPB of 60 minutes or more were randomly assigned to treatment with dextromethorphan (36-38 mg/kg/day) or placebo administered by naso-gastric tube. Dextromethorphan was absorbed well and reached putative therapeutic levels in blood and cerebrospinal fluid. Adverse effects were not observed. Mild hemiparesis developed after operation in one child of each group, and severe encephalopathy in one of the placebo group. Sharp waves were recorded in postoperative continuous electroencephalography in all placebo (n = 7) but only in 2/6 dextromethorphan treated children (p = 0.02). Pre- and postoperative cranial magnetic resonance imaging (MRI) revealed less pronounced ventricular enlargement in the dextromethorphan group (not significant). An increase of periventricular white matter lesions was visible in two placebo-treated children only. No elevations of cerebrospinal fluid enzymes were observed in either group. Although children with dextromethorphan showed less abnormalities in electroencephalography and MRI, dissimilarities of the treatment groups by chance diminished conclusions to possible protective effects of dextromethorphan at this time.
Resumo:
We combined biophysical, biochemical, and pharmacological approaches to investigate the ability of the alpha 1a- and alpha 1b-adrenergic receptor (AR) subtypes to form homo- and hetero-oligomers. Receptors tagged with different epitopes (hemagglutinin and Myc) or fluorescent proteins (cyan and green fluorescent proteins) were transiently expressed in HEK-293 cells either individually or in different combinations. Fluorescence resonance energy transfer measurements provided evidence that both the alpha 1a- and alpha 1b-AR can form homo-oligomers with similar transfer efficiency of approximately 0.10. Hetero-oligomers could also be observed between the alpha 1b- and the alpha 1a-AR subtypes but not between the alpha 1b-AR and the beta2-AR, the NK1 tachykinin, or the CCR5 chemokine receptors. Oligomerization of the alpha 1b-AR did not require the integrity of its C-tail, of two glycophorin motifs, or of the N-linked glycosylation sites at its N terminus. In contrast, helix I and, to a lesser extent, helix VII were found to play a role in the alpha 1b-AR homo-oligomerization. Receptor oligomerization was not influenced by the agonist epinephrine or by the inverse agonist prazosin. A constitutively active (A293E) as well as a signaling-deficient (R143E) mutant displayed oligomerization features similar to those of the wild type alpha 1b-AR. Confocal imaging revealed that oligomerization of the alpha1-AR subtypes correlated with their ability to co-internalize upon exposure to the agonist. The alpha 1a-selective agonist oxymetazoline induced the co-internalization of the alpha 1a- and alpha 1b-AR, whereas the alpha 1b-AR could not co-internalize with the NK1 tachykinin or CCR5 chemokine receptors. Oligomerization might therefore represent an additional mechanism regulating the physiological responses mediated by the alpha 1a- and alpha 1b-AR subtypes.
Resumo:
Advances in wound care are of great importance in clinical injury management. In this respect, the nuclear receptor peroxisome proliferator-activated receptor (PPAR)beta/delta occupies a unique position at the intersection of diverse inflammatory or anti-inflammatory signals that influence wound repair. This study shows how changes in PPARbeta/delta expression have a profound effect on wound healing. Using two different in vivo models based on topical application of recombinant transforming growth factor (TGF)-beta1 and ablation of the Smad3 gene, we show that prolonged expression and activity of PPARbeta/delta accelerate wound closure. The results reveal a dual role of TGF-beta1 as a chemoattractant of inflammatory cells and repressor of inflammation-induced PPARbeta/delta expression. Also, they provide insight into the so far reported paradoxical effects of the application of exogenous TGF-beta1 at wound sites.
Resumo:
Hereditary diffuse leukoencephalopathy with spheroids (HDLS) is an autosomal-dominant central nervous system white-matter disease with variable clinical presentations, including personality and behavioral changes, dementia, depression, parkinsonism, seizures and other phenotypes. We combined genome-wide linkage analysis with exome sequencing and identified 14 different mutations affecting the tyrosine kinase domain of the colony stimulating factor 1 receptor (encoded by CSF1R) in 14 families with HDLS. In one kindred, we confirmed the de novo occurrence of the mutation. Follow-up sequencing identified an additional CSF1R mutation in an individual diagnosed with corticobasal syndrome. In vitro, CSF-1 stimulation resulted in rapid autophosphorylation of selected tyrosine residues in the kinase domain of wild-type but not mutant CSF1R, suggesting that HDLS may result from partial loss of CSF1R function. As CSF1R is a crucial mediator of microglial proliferation and differentiation in the brain, our findings suggest an important role for microglial dysfunction in HDLS pathogenesis.
Resumo:
This work compares the structural/dynamics features of the wild-type alb-adrenergic receptor (AR) with those of the D142A active mutant and the agonist-bound state. The two active receptor forms were compared in their isolated states as well as in their ability to form homodimers and to recognize the G alpha q beta 1 gamma 2 heterotrimer. The analysis of the isolated structures revealed that, although the mutation- and agonist-induced active states of the alpha 1b-AR are different, they, however, share several structural peculiarities including (a) the release of some constraining interactions found in the wild-type receptor and (b) the opening of a cytosolic crevice formed by the second and third intracellular loops and the cytosolic extensions of helices 5 and 6. Accordingly, also their tendency to form homodimers shows commonalties and differences. In fact, in both the active receptor forms, helix 6 plays a crucial role in mediating homodimerization. However, the homodimeric models result from different interhelical assemblies. On the same line of evidence, in both of the active receptor forms, the cytosolic opened crevice recognizes similar domains on the G protein. However, the docking solutions are differently populated and the receptor-G protein preorientation models suggest that the final complexes should be characterized by different interaction patterns.
Resumo:
PURPOSE: Platelet-derived growth factor receptor-alpha (PDGFRA) mutations are found in approximately 5% to 7% of advanced gastrointestinal stromal tumors (GIST). We sought to extensively assess the activity of imatinib in this subgroup. EXPERIMENTAL DESIGN: We conducted an international survey among GIST referral centers to collect clinical data on patients with advanced PDGFRA-mutant GISTs treated with imatinib for advanced disease. RESULTS: Fifty-eight patients were included, 34 were male (59%), and median age at treatment initiation was 61 (range, 19-83) years. The primary tumor was gastric in 40 cases (69%). Thirty-two patients (55%) had PDGFRA-D842V substitutions whereas 17 (29%) had mutations affecting other codons of exon 18, and nine patients (16%) had mutation in other exons. Fifty-seven patients were evaluable for response, two (4%) had a complete response, eight (14%) had a partial response, and 23 (40%) had stable disease. None of 31 evaluable patients with D842V substitution had a response, whereas 21 of 31 (68%) had progression as their best response. Median progression-free survival was 2.8 [95% confidence interval (CI), 2.6-3.2] months for patients with D842V substitution and 28.5 months (95% CI, 5.4-51.6) for patients with other PDGFRA mutations. With 46 months of follow-up, median overall survival was 14.7 months for patients with D842V substitutions and was not reached for patients with non-D842V mutations. CONCLUSIONS: This study is the largest reported to date on patients with advanced PDGFRA-mutant GISTs treated with imatinib. Our data confirm that imatinib has little efficacy in the subgroup of patients with D842V substitution in exon 18, whereas other mutations appear to be sensitive to imatinib. Clin Cancer Res; 18(16); 4458-64. ©2012 AACR.
Resumo:
Rapport de synthèse : Le récepteur activé par protéase de type 2 (PAR2) intervient dans l'inflammation dans divers modèles expérimentaux de maladies inflammatoires et auto-immunes, mais le mécanisme par lequel il exerce cette fonction reste mal compris. PAR2 est exprimé sur des cellules endothéliales et immunitaires et a été impliqué dans la différentiation des cellules dendritiques (DC). Avec leur rôle central dans la réponse immune, les DC pourraient jouer un rôle clef, l'activation de PAR2 à leur surface modulant la réponse immune. Des recherches précédentes ont montré que PAR2 a un effet dans le développement et la maturation des DC de moelle osseuse in vitro, ainsi que dans la promotion de la réponse immune en allergie. Dans cette étude, nous avons évalué l'impact in vivo de l'activation de PAR2 sur les DC et les cellules T dans des souris déficientes en PAR2 (KO) en utilisant un peptide agoniste spécifique du PAR2 (AP2). L'activation de PAR2 a augmenté la fréquence de DC matures dans les ganglions lymphatiques 24 heures après l'administration d'AP2 d'une manière significative. En outre, ces DC avaient une expression augmentée des molécules de co-stimulation CD86 et du complexe majeur d'histocompatibilité type 2 (MHC-II). 48 heures après l'injection d'AP2, nous avons également observé une élévation significative des lymphocytes T CD4+ et CD8+ activés, (CD44+CD62-) dans ces ganglions. Des changements dans le profil d'activation des DC et des cellules T n'ont pas été observés au niveau de a rate. L'influence de la signalisation de PAR2 sur le transport d'antigène aux ganglions lymphatiques inguinaux a été évaluée dans le contexte d'hypersensibilité retardée de type IV. Les souris KO sensibilisées par peinture de la peau avec fluorescéine isothyocyanate (FITC) afin d'induire une hypersensibilité retardée avaient un pourcentage diminué de DC FITC+ dans les ganglions lymphatiques 24 heures après l'application du FITC en comparaison avec les souris sauvages avec le même fond génétique (0.47% vs 0.95% des cellules ganglionnaires totales). En conclusion, ces résultats démontrent que la signalisation de PAR2 favorise et renforce la maturation et le transport d'antigène par des DC .vers les ganglions lymphatiques ainsi que l'activation ultérieure des lymphocytes T, et de ce fait fournissent une explication pour l'effet pro inflammatoire de PAR2 dans les modèles animaux d'inflammation. Une meilleure compréhension de ce mécanisme de modulation du système immun via PAR2 peut s'avérer particulièrement utile pour le développement des vaccins, ainsi que pour la découverte de nouvelles cibles thérapeutiques dans le contexte de l'allergie, l'auto-immunité, et les maladies inflammatoires.