87 resultados para fatty acid binding protein


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fatty acids can favour the development of Type 2 diabetes by reducing insulin secretion and inducing apoptosis of pancreatic beta-cells. Here, we show that sustained exposure of the beta-cell line MIN6 or of isolated pancreatic islets to the most abundant circulating fatty acid palmitate increases the level of C/EBPbeta, an insulin transcriptional repressor. In contrast, two unsaturated fatty acids, oleate and linoleate were without effect. The induction of C/EBPbeta elicited by palmitate was prevented by inhibiting the ERK1/2 MAP kinase pathway or by reducing mitochondrial fatty acid oxidation with an inhibitor of Carnitine Palmitoyl Transferase-1. Overexpression of C/EBPbeta mimicked the detrimental effects of palmitate and resulted in a drastic reduction in insulin promoter activity, impairment in the capacity to respond to secretory stimuli and an increase in apoptosis. Our data suggest a potential involvement of C/EBPbeta as mediator of the deleterious effects of unsaturated free fatty acids on beta-cell function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A general update review of the dynamic aspect of protein metabolism is presented. The effect of excess protein level on protein metabolism has been the object of a limited number of studies in man. From the information available, it appears that the primary regulatory pathway for body protein homeostasis is the process of amino acid (protein) oxidation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Waardenburg anophthalmia syndrome, also known as microphthalmia with limb anomalies, ophthalmoacromelic syndrome, and anophthalmia-syndactyly, is a rare autosomal-recessive developmental disorder that has been mapped to 10p11.23. Here we show that this disease is heterogeneous by reporting on a consanguineous family, not linked to the 10p11.23 locus, whose two affected children have a homozygous mutation in SMOC1. Knockdown experiments of the zebrafish smoc1 revealed that smoc1 is important in eye development and that it is expressed in many organs, including brain and somites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We conducted a study of the patterns and dynamics of oxidized fatty acid derivatives (oxylipins) in potato leaves infected with the late-blight pathogen Phytophthora infestans. Two 18-carbon divinyl ether fatty acids, colneleic acid and colnelenic acid, accumulated during disease development. To date, there are no reports that such compounds have been detected in higher plants. The divinyl ether fatty acids accumulate more rapidly in potato cultivar Matilda (a cultivar with increased resistance to late blight) than in cultivar Bintje, a susceptible cultivar. Colnelenic acid reached levels of up to approximately 24 nmol (7 microgram) per g fresh weight of tissue in infected leaves. By contrast, levels of members of the jasmonic acid family did not change significantly during pathogenesis. The divinyl ethers also accumulated during the incompatible interaction of tobacco with tobacco mosaic virus. Colneleic and colnelenic acids were found to be inhibitory to P. infestans, suggesting a function in plant defense for divinyl ethers, which are unstable compounds rarely encountered in biological systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interleukin (IL) 18 is a potent pro-inflammatory Th1 cytokine that exerts pleiotropic effector functions in both innate and acquired immune responses. Increased IL-18 production during acute rejection has been reported in experimental heart transplantation models and in kidney transplant recipients. IL-18-binding protein (IL-18BP) binds IL-18 with high affinity and neutralizes its biologic activity. We have analyzed the efficacy of an adenoviral vector expressing an IL-18BP-Ig fusion protein in a rat model of heart transplantation. IL-18BP-Ig gene transfer into Fisher (F344) rat donor hearts resulted in prolonged graft survival in Lewis recipients (15.8 +/- 1.4 days vs. 10.3 +/- 2.5 and 10.1 +/- 2.1 days with control virus and buffer solution alone, respectively; P < 0.001). Immunohistochemical analysis revealed decreased intra-graft infiltrates of monocytes/macrophages, CD4(+), CD8alpha(+) and T-cell receptor alphabeta(+) cells after IL-18BP-Ig versus mock gene transfer (P < 0.05). Real-time reverse transcriptase polymerase chain reaction analysis showed decreased cytokine transcripts for the RANTES chemokine and transforming growth factor-beta after IL-18BP-Ig gene transfer (P < 0.05). IL-18BP-Ig gene transfer attenuates inflammatory cell infiltrates and prolongs cardiac allograft survival in rats. These results suggest a contributory role for IL-18 in acute rejection. Further studies aiming at defining the therapeutic potential of IL-18BP are warranted.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The transcription regulation of many hormone genes is modulated by intracellular second messengers such as cAMP. The cAMP response element binding protein, CREB, binds to the 8 base pair CRE enhancer, TGACGTCA, that is found in the 5'-flank of certain genes including those for somatostatin and the alpha-subunit of human chorionic gonadotropin. The recent characterization of CREB and CREB-related cDNA clones, combined with Southwesterns and Northern blot analyses, reveals a family of transcription factors that dimerize via a leucine zipper motif and bind to the CRE through positively charged basic regions. The CREB cDNA encoding a 327 residue protein is transcriptionally activated via phosphorylation by protein kinases, including the cAMP-dependent protein kinase-A.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND &amp; AIMS: The peroxisome proliferator-activated nuclear receptors (PPAR-alpha, PPAR-beta, and PPAR-gamma), which modulate the expression of genes involved in energy homeostasis, cell cycle, and immune function, may play a role in hepatic stellate cell activation. Previous studies focused on the decreased expression of PPAR-gamma in hepatic stellate cell activation but did not investigate the expression and role of the PPAR-alpha and -beta isotypes. The aim of this study was to evaluate the expression of the different PPARs during hepatic stellate cell activation in vitro and in situ and to analyze possible factors that might contribute to their expression. In a second part of the study, the effect of a PPAR-beta agonist on acute liver injury was evaluated. METHODS: The effects of PPAR isotype-specific ligands on hepatic stellate cell transition were evaluated by bromodeoxyuridine incorporation, gel shifts, immunoprecipitation, and use of antisense PPAR-beta RNA-expressing adenoviruses. Tumor necrosis factor alpha-induced PPAR-beta phosphorylation and expression was evaluated by metabolic labeling and by using specific P38 inhibitors. RESULTS: Hepatic stellate cells constitutively express high levels of PPAR-beta, which become further induced during culture activation and in vivo fibrogenesis. No significant expression of PPAR-alpha or -gamma was found. Stimulation of the P38 mitogen-activated protein kinase pathway modulated the expression of PPAR-beta. Transcriptional activation of PPAR-beta by L165041 enhanced hepatic stellate cell proliferation. Treatment of rats with a single bolus of CCl(4) in combination with L165041 further enhanced the expression of fibrotic markers. CONCLUSIONS: PPAR-beta is an important signal-transducing factor contributing to hepatic stellate cell proliferation during acute and chronic liver inflammation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Postischemic recovery of contractile function is better in hearts from fasted rats than in hearts from fed rats. In this study, we examined whether feeding-induced inhibition of palmitate oxidation at the level of carnitine palmitoyl transferase I is involved in the mechanism underlying impaired recovery of contractile function. Hearts isolated from fasted or fed rats were submitted to no-flow ischemia followed by reperfusion with buffer containing 8 mM glucose and either 0.4 mM palmitate or 0.8 mM octanoate. During reperfusion, oxidation of palmitate was higher after fasting than after feeding, whereas oxidation of octanoate was not influenced by the nutritional state. In the presence of palmitate, recovery of left ventricular developed pressure was better in hearts from fasted rats. Substitution of octanoate for palmitate during reperfusion enhanced recovery of left ventricular developed pressure in hearts from fed rats. However, the chain length of the fatty acid did not influence diastolic contracture. The results suggest that nutritional variation of mitochondrial fatty acid transfer may influence postischemic recovery of contractile function.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phototropism, or plant growth in response to unidirectional light, is an adaptive response of crucial importance. Lateral differences in low fluence rates of blue light are detected by phototropin 1 (phot1) in Arabidopsis. Only NONPHOTOTROPIC HYPOCOTYL 3 (NPH3) and root phototropism 2, both belonging to the same family of proteins, have been previously identified as phototropin-interacting signal transducers involved in phototropism. PHYTOCHROME KINASE SUBSTRATE (PKS) 1 and PKS2 are two phytochrome signaling components belonging to a small gene family in Arabidopsis (PKS1-PKS4). The strong enhancement of PKS1 expression by blue light and its light induction in the elongation zone of the hypocotyl prompted us to study the function of this gene family during phototropism. Photobiological experiments show that the PKS proteins are critical for hypocotyl phototropism. Furthermore, PKS1 interacts with phot1 and NPH3 in vivo at the plasma membrane and in vitro, indicating that the PKS proteins may function directly with phot1 and NPH3 to mediate phototropism. The phytochromes are known to influence phototropism but the mechanism involved is still unclear. We show that PKS1 induction by a pulse of blue light is phytochrome A-dependent, suggesting that the PKS proteins may provide a molecular link between these two photoreceptor families.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Physical damage and disease are known to lead to changes in the oxylipin signature of plants. We searched for oxylipins produced in response to both wounding and pathogenesis in Arabidopsis leaves. Linoleic acid 9- and 13-ketodienes (KODEs) were found to accumulate in wounded leaves as well as in leaves infected with the pathogen Pseudomonas syringae pv. tomato (Pst). Quantification of the compounds showed that they accumulated to higher levels during the hypersensitive response to Pst avrRpm1 than during infection with a Pst strain lacking an avirulence gene. KODEs are Michael addition acceptors, containing a chemically reactive alpha,beta-unsaturated carbonyl group. When infiltrated into leaves, KODEs were found to induce expression of the GST1 gene, but vital staining indicated that these compounds also damaged plant cells. Several molecules typical of lipid oxidation, including malonaldehyde, also contain the alpha,beta-unsaturated carbonyl reactivity feature, and, when delivered in a volatile form, powerfully induced the expression of GST1. The results draw attention to the potential physiological importance of naturally occurring Michael addition acceptors in plants. In particular, these compounds could act directly, or indirectly via cell damage, as powerful gene activators and might also contribute to host cell death.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

How can an ex-orphan be adopted? Is it possible to do so by attributing to it a key endogenous ligand that regulates its central functions? In the recent issue of Cell, Chakravarthy et al. attempted to answer this question by characterizing a new physiologically relevant ligand for the ex-orphan receptor peroxisome proliferator activated receptor alpha (PPARalpha).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rapport de synthèse : Introduction : La croissance foetale infra-utérine dépend d'un grand nombre de facteurs maternels, placentaires et foetaux. Une inadéquation d'un ou plusieurs de ces facteurs peut induire un retard de croissance infra-utérin (RCIU) ou au contraire une macrosomie. Les principales causes de RCIU comprennent les infections maternelles, l'éclampsie, les cardiovasculopathies maternelles, la toxicomanie, les malformations foetales et les insuffisances placentaires. Les facteurs endocriniens constituent un petit pourcentage des causes de RCIU, mais méritent que l'on s'y intéresse de plus près. Les facteurs hormonaux les plus importants pour la croissance fatale sont l'insuline et les insuline-like growth factors (IGFs) et non l'hormone de croissance (GH) qui joue un rôle majeur dans la croissance postnatale. Notre attention s'est portée sur IGF-1 qui joue un rôle important dans la croissance intrautérine. Sa biodisponibilité dépend de plusieurs protéines plasmatiques, les IGF-binding proteins (IGFBP 1 à 9). IGFBP-3 est la principale de ces IGFBPs, autant d'un point de vue quantitatif que fonctionnel. Nous avons cherché à déterminer si les concentrations d'IGF-1 et d'IGFBP-3 dans le liquide amniotique au début du deuxième trimestre étaient prédictives de la croissance infra-utérine. Les gènes codant pour IGF-1 et IGFBP-3 contenant certaines séquences polymorphiques, nous avons également étudié leur influence sur la croissance foetale. L'analyse du liquide amniotique présente l'avantage de pouvoir être effectuée dès la 14ème semaine d'aménorrhée alors que la biométrie foetale échographique ne permet pas à ce stade de déceler des anomalies de la croissance infra-utérine. Méthode : Nous avons analysé des échantillons de liquide amniotique prélevés entre la 14ème et la 18ème semaine de grossesse chez 196 patientes. Les concentrations d'IGF-1 et d'IGFBP-3 ont été dosées par ELISA, les polymorphismes analysés par PCR. Ces résultats ont été ensuite analysés en fonction du poids de naissance des nouveaux-nés, répartis en trois groupes normal pour l'âge gestationnel (AGA), petit pour l'âge gestationnel (SGA) et grand pour l'âge gestationnel (LGA). Résultats : Les concentrations d'IGFBP3 dans le liquide amniotique sont significativement plus élevées (p = 0.030) dans le groupe SGA par rapport au groupe AGA, d'autant plus quand les taux sont ajustés en fonction de paramètres tels que l'âge gestationnel lors de l'amniocentèse (ANCOVA analysis : p = 0.009). La distribution du polymorphisme VNTR (variable number of tandem repeat) dans la région promotrice d'IGF-1 au sein du groupe SGA est significativement différente de celle du groupe AGA (p = 0.029). En effet, la fréquence de l'association allélique 19CA/20CA est diminuée dans le groupe SGA. Nous n'avons pas identifié de différence de distribution des séquences polymorphiques d'IGFBP-3 entre les différents groupes. Conclusion : Une concentration élevée d'IGFBP-3 dans le liquide amniotique au début du deuxième trimestre est associée à un risque plus élevé de retard de croissance alors que l'association allélique 19CA/20CA dans la région polymorphique IGF-1 VNTR est un facteur protecteur.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The growth of any solid tumor depends on angiogenesis. Vascular endothelial growth factor (VEGF) plays a prominent role in vesical tumor angiogenesis regulation. Previous studies have shown that the peroxisome proliferator-activated receptor gamma (PPARgamma) was involved in the angiogenesis process. Here, we report for the first time that in two different human bladder cancer cell lines, RT4 (derived from grade I tumor) and T24 (derived from grade III tumor), VEGF (mRNA and protein) is differentially up-regulated by the three PPAR isotypes. Its expression is increased by PPARalpha, beta, and gamma in RT4 cells and only by PPARbeta in T24 cells via a transcriptional activation of the VEGF promoter through an indirect mechanism. This effect is potentiated by an RXR (retinoid-X-receptor), selective retinoid LG10068 providing support for a PPAR agonist-specific action on VEGF expression. While investigating the downstream signaling pathways involved in PPAR agonist-mediated up-regulation of VEGF, we found that only the MEK inhibitor PD98059 reduced PPAR ligand-induced expression of VEGF. These data contribute to a better understanding of the mechanisms by which PPARs regulate VEGF expression. They may lead to a new therapeutic approach to human bladder cancer in which excessive angiogenesis is a negative prognostic factor.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Macrophage migration-inhibitory factor (MIF) has recently been identified as a pituitary hormone that functions as a counterregulatory modulator of glucocorticoid action within the immune system. In the anterior pituitary gland, MIF is expressed in TSH- and ACTH-producing cells, and its secretion is induced by CRF. To investigate MIF function and regulation within pituitary cells, we initiated the characterization of the MIF 5'-regulatory region of the gene. The -1033 to +63 bp of the murine MIF promoter was cloned 5' to a luciferase reporter gene and transiently transfected into freshly isolated rat anterior pituitary cells. This construct drove high basal transcriptional activity that was further enhanced after stimulation with CRF or with an activator of adenylate cyclase. These transcriptional effects were associated with a concomitant rise in ACTH secretion in the transfected cells and by an increase in MIF gene expression as assessed by Northern blot analysis. A cAMP-responsive element (CRE) was identified within the MIF promoter region which, once mutated, abolished the cAMP responsiveness of the gene. Using this newly identified CRE, DNA-binding activity was detected by gel retardation assay in nuclear extracts prepared from isolated anterior pituitary cells and AtT-20 corticotrope tumor cells. Supershift experiments using antibodies against the CRE-binding protein CREB, together with competition assays and the use of recombinant CREB, allowed the detection of CREB-binding activity with the identified MIF CRE. These data demonstrate that CREB is the mediator of the CRF-induced MIF gene transcription in pituitary cells through an identified CRE in the proximal region of the MIF promoter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dietary obesity is a major factor in the development of type 2 diabetes and is associated with intra-adipose tissue hypoxia and activation of hypoxia-inducible factor 1α (HIF1α). Here we report that, in mice, Hif1α activation in visceral white adipocytes is critical to maintain dietary obesity and associated pathologies, including glucose intolerance, insulin resistance, and cardiomyopathy. This function of Hif1α is linked to its capacity to suppress β-oxidation, in part, through transcriptional repression of sirtuin 2 (Sirt2) NAD(+)-dependent deacetylase. Reduced Sirt2 function directly translates into diminished deacetylation of PPARγ coactivator 1α (Pgc1α) and expression of β-oxidation and mitochondrial genes. Importantly, visceral adipose tissue from human obese subjects is characterized by high levels of HIF1α and low levels of SIRT2. Thus, by negatively regulating the Sirt2-Pgc1α regulatory axis, Hif1α negates adipocyte-intrinsic pathways of fatty acid catabolism, thereby creating a metabolic state supporting the development of obesity.