56 resultados para cortico-striatal
Resumo:
Magnetic resonance imaging (MRI) and spectroscopy (MRS) allow establishing theanatomical evolution and neurochemical profiles of ischemic lesions. However onlylimited MRS studies have been reported to-date in mice due to the challenges ofMRS in small organs. The aim of the current work was to study the neurochemicaland imaging sequelae of ischemic stroke in a mouse model in a horizontal bore14.1 Tesla system.ICR-CD1 mice were subjected to 30 minute transient middle cerebral artery occlusion.The extent of the lesion was determined by MRI. The neurochemical profileconsisting of the concentrations of 22 metabolites was measured longitudinallyfollowing the recovery from ischemia at 3, 8 and 24h in the striatum.Our model produced very reproducible striatal lesions which began to appear onT2-weighted images 8h after ischemia. At 24h, they were well established andtheir size correlated with lesions measured by histology. Profound changes couldbe observed in the neurochemical profiles of the core of the striatal lesions as earlyas 3h post-ischemia, in particular, we observed elevated lactate levels, decreases inthe putative neuronal marker N-acetyl-aspartate and in glutamate, and a transienttwo-fold glutamine increase, likely linked to excitotoxic release of glutamate andconversion to glutamine. With further ischemia evolution, other changes appearedat later time-points, mainly decreases of metabolites, consistent with disruption ofcellular function. It is interesting to note that glutamine tended to return to basallevels at 24h.We conclude that early changes in markers of energy metabolism, glutamate excitotoxicityand neuronal viability can be detected with high precision non-invasively inmice following stroke. Such investigations should lead to a better understanding andinsight into the sequential early changes in the brain parenchyma after ischemia,which could be used e.g. for identifying new targets for neuroprotection.
Resumo:
The structure of the brain as a product of morphogenesis is difficult to reconcile with the observed complexity of cerebral connectivity. We therefore analyzed relationships of adjacency and crossing between cerebral fiber pathways in four nonhuman primate species and in humans by using diffusion magnetic resonance imaging. The cerebral fiber pathways formed a rectilinear three-dimensional grid continuous with the three principal axes of development. Cortico-cortical pathways formed parallel sheets of interwoven paths in the longitudinal and medio-lateral axes, in which major pathways were local condensations. Cross-species homology was strong and showed emergence of complex gyral connectivity by continuous elaboration of this grid structure. This architecture naturally supports functional spatio-temporal coherence, developmental path-finding, and incremental rewiring with correlated adaptation of structure and function in cerebral plasticity and evolution.
Resumo:
A transitory projection from primary and secondary auditory areas to the contralateral and ipsilateral areas 17 and 18 exists in newborn kittens. Distinct neuronal populations project to ipsilateral areas 17-18, contralateral areas 17-18 and contralateral auditory cortex; they are at different depth in layers II, III, and IV. By postnatal day 38 the auditory to visual projections have been lost, apparently by elimination of axons rather than by neuronal death. While it was previously reported that the elimination of transitory axons is responsible for focusing the origin of callosal connections to restricted portions of sensory areas it now appears that similar events play a more general role in the organization of cortico-cortical networks. Indeed, the elimination of juvenile projections is largely responsible for determining which areas will be connected in the adult.
Resumo:
Diffusion MRI has evolved towards an important clinical diagnostic and research tool. Though clinical routine is using mainly diffusion weighted and tensor imaging approaches, Q-ball imaging and diffusion spectrum imaging techniques have become more widely available. They are frequently used in research-oriented investigations in particular those aiming at measuring brain network connectivity. In this work, we aim at assessing the dependency of connectivity measurements on various diffusion encoding schemes in combination with appropriate data modeling. We process and compare the structural connection matrices computed from several diffusion encoding schemes, including diffusion tensor imaging, q-ball imaging and high angular resolution schemes, such as diffusion spectrum imaging with a publically available processing pipeline for data reconstruction, tracking and visualization of diffusion MR imaging. The results indicate that the high angular resolution schemes maximize the number of obtained connections when applying identical processing strategies to the different diffusion schemes. Compared to the conventional diffusion tensor imaging, the added connectivity is mainly found for pathways in the 50-100mm range, corresponding to neighboring association fibers and long-range associative, striatal and commissural fiber pathways. The analysis of the major associative fiber tracts of the brain reveals striking differences between the applied diffusion schemes. More complex data modeling techniques (beyond tensor model) are recommended 1) if the tracts of interest run through large fiber crossings such as the centrum semi-ovale, or 2) if non-dominant fiber populations, e.g. the neighboring association fibers are the subject of investigation. An important finding of the study is that since the ground truth sensitivity and specificity is not known, the comparability between results arising from different strategies in data reconstruction and/or tracking becomes implausible to understand.
Resumo:
Résumé Le présent travail de thèse a fait face au défi de lier les changements transcriptionnels dans les neurones du système nerveux central au développement de l'addiction aux drogues. I1 est connu que l'apprentissage induit des modifications au niveau de la structure du cerveau, principalement en changeant la manière dont les neurones sont interconnectés par des synapses. De plus en plus d'évidences soutiennent un scénario selon lequel l'activité neuronale déclenche des cascades de signalisation intracellulaire qui ciblent des facteurs de transcription. Ces derniers peuvent activer la transcription de gènes spécifiques qui codent pour des protéines nécessaires au renforcement des synapses mémorisant ainsi la nouvelle information. Puisque l'addiction peut être considérée comme une forme aberrante d'apprentissage, et que les modifications synaptiques sont connues pour être impliquées dans le processus d'addiction, nous essayons de décrire des mécanismes transcriptionels étant à la base des changements synaptiques induits par les drogues. Comme modèle nous utilisons des cultures primaires des neurones de striatum, d'hippocampe et de cortex de souris ainsi que des tranches de cerveau de rat. Une des caractéristiques communes de quasiment toutes les substances addictives est de pouvoir activer le système mésolimbique dopaminergique provoquant la libération de dopamine sur les neurones du striatum (du noyau accumbens). Dans ce travail de thèse nous démontrons que dans des cultures du striatum, la dopamine induit le facteur de transcription C/EBPβ qui, à son tour, provoque l'expression du gène codant pour la substance P. Ce mécanisme pourrait potentiellement contribuer à la tolérance envers les drogues puisqu'il fait partie d'une rétroaction (feed-back) sur les cellules produisant la dopamine. Etant donné que ces résultats montrent l'importance de C/EBPβ dans la psychopathologie de l'addiction, nous avons également décidé d'étudier les mécanismes fondamentaux de l'activation de la transcription par C/EBPβ. Nos expériences démontrent que trois isoformes activatrices de la famille C/EBP recrutent le coactivateur CBP et provoquent en même temps sa phosphorylation. Enfin, nous montrons que les coactivateurs nommés TORC, nouvellement découverts et clonés, sont capables de détecter la coïncidence d'un signal cAMP et d'une entrée de calcium dans des neurones. Par conséquent les TORCs pourraient contribuer à détecter la coïncidence d'un signal glutamate et d'un signal dopamine dans les neurones de striatum, ce qui pourrait être important pour associer les effets hédonistes de la drogue à l'information contextuelle (par exemple à l'environnement où la drogue a été consommée). Nous sommes les premiers à observer que les TORCs sont nécessaires pour la potentiation à long terme dans l'hippocampe. Summary The present thesis work faced the challenge to link the development of drug addiction to transcriptional changes in the neurons of the central nervous system. Experience and learning are known to induce structural modifications in the brain, and these changes are thought to occur mainly in the way neurons are interconnected by synapses. More and more evidences point to a scenario in which neuronal activity would activate signalization cascades that impinge on transcription factors, which, in turn, would activate genes necessary for the reinforcement of synapses coding for new informations. Given that drug addiction can be considered as an aberrant form of learning and is thought to involve synaptic modifications, we try to elucidate some of the transcriptional mechanisms that could underlie drug-induced synaptic changes. As a model system, we use primary cultures of striatal, cortical and hippocampal neurons dissected from mouse embryos as well as brain slices from rats. One of the common features of virtually all drugs of abuse is to activate the mesocorticolimbic dopaminergic system that results in the release of dopamine onto the neurons of the striatum (nucleus accumbens). In this thesis work we show that in striatal cultures, dopamine induces the transcription factor C/EBPβ that in turn drives the expression of the gene coding for substance P. This mechanism is likely to be important for the drug-induced tolerance in the brain since it might be a part of a feedback acting on dopaminergic neurons. Given the suspected importance of C/EBPβ in drug addiction, we also try to elucidate some aspects of the basic mechanisms by which the C/EBP family activates transcription. We show that three activating members of the C/EBP family recruit the coactivator CBP and trigger its phosphorylation. Finally, we demonstrate that the newly discovered and cloned transcriptional coactivators, named TORCs (transducers of regulated CREB activity) are able to detect the coincidence of a calcium and a cAMP signal in the central nervous system. This way, TORCs could contribute to the detection of a coincidence between a glutamate and a dopamine signal in striatal neurons - a process that is suggested to be important for an association between the rewarding effect of a drug and contextual information (such as the environment where the drug had been taken). We demonstrate that TORCs are required for hippocampal LTP.
Resumo:
AIM: To describe a large family with autosomal dominant parkinsonism. BACKGROUND: Seven genes are directly implicated in autosomally inherited parkinsonism. However, there are several multigenerational large families known with no identifiable mutation. MATERIAL AND METHODS: Family members were evaluated clinically, by history and chart review. Genetic investigation included SCA2, SCA3, UCHL1, SNCA, LRRK2, PINK1, PRKN, PGRN, FMR1 premutation, and MAPT. The proband underwent brain fluorodopa PET (FD-PET) scan, and one autopsy was available. RESULTS: Eleven patients had a diagnosis of Parkinson's disease (PD), nine women. Mean age of onset was 52 with tremor-predominant dopa-responsive parkinsonism. Disease progression was slow but severe motor fluctuations occurred. One patient required subthalamic nucleus deep-brain stimulation with a good motor outcome. One patient had mental retardation, schizophrenia and became demented, and another patient was demented. Three patients and also two unaffected subjects had mild learning difficulties. All genetic tests yielded negative results. FD-PET showed marked asymmetric striatal tracer uptake deficiency, consistent with PD. Pathological examination demonstrated no Lewy bodies and immunostaining was negative for alpha-synuclein. CONCLUSION: Apart from a younger age of onset and a female predominance, the phenotype was indistinguishable from sporadic tremor-predominant PD, including FD-PET scan results. As known genetic causes of autosomal dominant PD were excluded, this family harbors a novel genetic defect.
Resumo:
Extreme prematurity and pregnancy conditions leading to intrauterine growth restriction (IUGR) affect thousands of newborns every year and increase their risk for poor higher order cognitive and social skills at school age. However, little is known about the brain structural basis of these disabilities. To compare the structural integrity of neural circuits between prematurely born controls and children born extreme preterm (EP) or with IUGR at school age, long-ranging and short-ranging connections were noninvasively mapped across cortical hemispheres by connection matrices derived from diffusion tensor tractography. Brain connectivity was modeled along fiber bundles connecting 83 brain regions by a weighted characterization of structural connectivity (SC). EP and IUGR subjects, when compared with controls, had decreased fractional anisotropy-weighted SC (FAw-SC) of cortico-basal ganglia-thalamo-cortical loop connections while cortico-cortical association connections showed both decreased and increased FAw-SC. FAw-SC strength of these connections was associated with poorer socio-cognitive performance in both EP and IUGR children.
Resumo:
Dopamine (DA) plays a major role in motor and cognitive functions as well as in reward processing by regulating glutamatergic inputs. In particular in the striatum the release of DA rapidly influences synaptic transmission modulating both AMPA and NMDA receptors. Several neurodegenerative and neuropsychiatric disorders, including Parkinson, Huntington and addiction-related diseases, manifest a dysregulation of glutamate and DA signaling. Here, we will focus our attention on the mechanisms underlying the modulation of the glutamatergic transmission by DA in striatal circuits.
Resumo:
The dopamine (DA) transporter (DAT) is a plasma membrane glycoprotein expressed in dopaminergic (DA-) cells that takes back DA into presynaptic neurons after its release. DAT dysfunction has been involved in different neuro-psychiatric disorders including Parkinson's disease (PD). On the other hand, numerous studies support that the glial cell line-derived neurotrophic factor (GDNF) has a protective effect on DA-cells. However, studies in rodents show that prolonged GDNF over-expression may cause a tyrosine hydroxylase (TH, the limiting enzyme in DA synthesis) decline. The evidence of TH down-regulation suggests that another player in DA handling, DAT, may also be regulated by prolonged GDNF over-expression, and the possibility that this effect is induced at GDNF expression levels lower than those inducing TH down-regulation. This issue was investigated here using intrastriatal injections of a tetracycline-inducible adeno-associated viral vector expressing human GDNF cDNA (AAV-tetON-GDNF) in rats, and doxycycline (DOX; 0.01, 0.03, 0.5 and 3mg/ml) in the drinking water during 5weeks. We found that 3mg/ml DOX promotes an increase in striatal GDNF expression of 12× basal GDNF levels and both DA uptake decrease and TH down-regulation in its native and Ser40 phosphorylated forms. However, 0.5mg/ml DOX promotes a GDNF expression increase of 3× basal GDNF levels with DA uptake decrease but not TH down-regulation. The use of western-blot under non-reducing conditions, co-immunoprecipitation and in situ proximity ligation assay revealed that the DA uptake decrease is associated with the formation of DAT dimers and an increase in DAT-α-synuclein interactions, without changes in total DAT levels or its compartmental distribution. In conclusion, at appropriate GDNF transduction levels, DA uptake is regulated through DAT protein-protein interactions without interfering with DA synthesis.
Resumo:
Background and Question Paired-pulse TMS (Transcranial Magnetic Stimulation) paradigms allow explore motor cortex physiology. The Triple Stimulation Technique (TST) improves conventional TMS in quantifying cortico-spinal conduction. The objective of our study was to compare both methods in paired-pulse paradigms of inhibition and of facilitation. Method We investigated paired pulse paradigms of 2 ms (short intra-cortical inhibition) and of 10 ms intervals (intra cortical facilitation) in a randomized order in 22 healthy subjects applying conventional TMS and the TST protocol. Results Paired-pulse paradigms by both TMS and the TST yielded comparable results of short intra- cortical inhibition and intra cortical facilitation. However, the coefficient of variation was significantly smaller for SICI paradigm using TST. Conclusion These results suggest no greater sensitivity of the TST for quantifying inhibition and facilitation. The utility of TST to better quantify the individual amount of inhibition in SICI paradigms and its clinical utility need further studies.