141 resultados para complex functions


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Introduction of potent antiretroviral combination therapy (ART) has reduced overall morbidity and mortality amongst HIV-infected adults. Some prophylactic regimes against opportunistic infections can be discontinued in patients under successful ART. (1) The influence of the availability of ART on incidence and mortality of disseminated M. avium Complex infection (MAC). (2) The safety of discontinuation of maintenance therapy against MAC in patients on ART. The Swiss HIV-Cohort Study, a prospective multicentre study of HIV-infected adults. Patients with a nadir CD4 count below 50 cells/mm3 were considered at risk for MAC and contributed to total follow-up time for calculating the incidence. Survival analysis was performed by using Kaplan Meier and Cox proportional hazards methods. Safety of discontinuation of maintenance therapy was evaluated by review of the medical notes. 398 patients were diagnosed with MAC from 1990 to 1999. 350 had a previous CD4 count below 50 cells/mm3. A total of 3208 patients had a nadir CD4 count of less than 50 cells/mm3 during the study period and contributed to a total follow-up of 6004 person-years. The incidence over the whole study period was 5.8 events per 100 person-years. In the time period of available ART the incidence of MAC was significantly reduced (1.4 versus 8.8 events per 100 person-years, p < 0.001). Being diagnosed after 1995 was the most powerful predictor of better survival (adjusted hazard ratio for death: 0.27; p < 0.001). None of 24 patients discontinuing maintenance therapy while on ART experienced recurrence of MAC during a total follow-up of 56.6 person-years (upper 95% confidence limit 5.3 per 100 person-years). Introducing ART has markedly reduced the risk of MAC for HIV-infected individuals with a history of very low CD4 counts. Survival after diagnosis of MAC has improved after ART became available. In patients responding to ART, discontinuation of maintenance therapy against M. avium may be safe.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Åknes is an active complex large rockslide of approximately 30?40 Mm3 located within the Proterozoic gneisses of western Norway. The observed surface displacements indicate that this rockslide is divided into several blocks moving in different directions at velocities of between 3 and 10 cm year?1. Because of regional safety issues and economic interests this rockslide has been extensively monitored since 2004. The understanding of the deformation mechanism is crucial for the implementation of a viable monitoring system. Detailed field investigations and the analysis of a digital elevation model (DEM) indicate that the movements and the block geometry are controlled by the main schistosity (S1) in gneisses, folds, joints and regional faults. Such complex slope deformations use pre-existing structures, but also result in new failure surfaces and deformation zones, like preferential rupture in fold-hinge zones. Our interpretation provides a consistent conceptual three-dimensional (3D) model for the movements measured by various methods that is crucial for numerical stability modelling. In addition, this reinterpretation of the morphology confirms that in the past several rockslides occurred from the Åknes slope. They may be related to scars propagating along the vertical foliation in folds hinges. Finally, a model of the evolution of the Åknes slope is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SUMMARY Genomic imprinting is an epigenetic mechanism of transcriptional regulation that ensures restriction of expression of a subset of mammalian genes to a single parental allele. The best studied example of imprinted gene regulation is the Igf2/H19 locus, which is also the most commonly altered by loss of imprinting (LOT) in cancer. LOT is associated with numerous hereditary diseases and several childhood, and adult cancers. Differential expression of reciprocal H19 and 1gf2 alleles in somatic cells depends on the methylation status of the imprinting control region (ICR) which regulates binding of CTCF, an ubiquitously expressed 11-zinc finger protein that binds specifically to non-methylated maternal ICR and thereby attenuates expression of Igf2, while it does not bind to methylated paternal ICR, which enables Igf2 expression. Initial ICR methylation occurs during gametogenesis by an as yet unknown mechanism. The accepted hypothesis is that the event of differential maternal and paternal DNA methylation depends on germ-line specific proteins. Our Laboratory identified a novel 11-zinc-finger protein CTCF-T (also known as CTCFL and BORIS) that is uniquely expressed in the male germ-line and is highly homologous within its zinc-finger region with CTCF. The amino-acid sequences flanking the zinc-finger regions of CTCF and CTCF-T have widely diverged, suggesting that though they could bind to the same DNA targets (ICRs) they are likely to have different functions. Interestingly, expression of CTCF-T and CTCF is mutually exclusive; CTCF-T-positive (CTCF-negative) cells occur in the stage of spermatogenesis that coincides with epigenetic reprogramming, including de novo DNA methylation. In our study we demonstrate the role that CTCF-T plays in genomic imprinting. Here we show that CTCF-T binds in vivo to the ICRs of Igf2/H19 and Dlk/Gt12 imprinted genes. In addition, we identified two novel proteins interacting with CTCF-T: a protein arginine methyltransferase PRMT7 and an arginine-rich histone H2A variant that we named trH2A. These interactions were confirmed and show that the two proteins interact with the amino-teiminal region of CTCF-T. Additionally, we show interaction of the amino- terminal region of CTCF-T with histones H1, H2A and H3. These results suggest that CTCF-T is a sequence-specific DNA (ICR) binding protein that associates with histones and recruits PRMT7. Interestingly, PRMT7 has a histone-methyltransferase activity. It has been shown that histone methylation can mark chromatin regions thereby directing DNA-methylation; thus, our hypothesis is that the CTCF-T protein-scaffold directs PRMT7 to methylate histone(s) assembled on ICRs, which marks chromatin for the recruitment of the de novo DNA methyltransferases to methylate DNA. To test this hypothesis, we developed an in vivo DNA-methylation assay using Xenopus laevis' oocytes, where H19 ICR and different expression cDNAs, including CTCF-T, PRMT7 and the de novo DNA methyltransferases (Dnmt3a, Dnmt3b and Dnmt3L) are microinjected into the nucleus. The methylation status of CpGs within the H19 ICR was analysed 48 or 72 hours after injection. Here we demonstrate that CpGs in the ICR are methylated in the presence of both CTCF-T and PRMT7, while control oocytes injected only with ICR did not show any methylation. Additionally, we showed for the first time that Dnmt3L is crucial for the establishment of the imprinting marks on H19 ICR. Moreover, we confirmed that Dnmt3a and Dnmt3b activities are complementary. Our data indicate that all three Dnmt3s are important for efficient de novo DNA methylation. In conclusion, we propose a mechanism for the establishment of de novo imprinting marks during spermatogenesis: the CTCF-T/PRMT7 protein complex directs histone methylation leading to sequence-specific de novo DNA methylation of H19 ICR. RESUME L'empreinte génomique parentale est un mécanisme épigénétique de régulation transcriptionelle qui se traduit par une expression différentielle des deux allèles de certains gènes, en fonction de leur origine parentale. L'exemple le mieux caractérisé de gènes soumis à l'empreinte génomique parentale est le locus Igf2/H19, qui est aussi le plus fréquemment altéré par relaxation d'empreinte (en anglais: loss of imprinting, LOI) dans les cancers. Cette relaxation d'empreinte est aussi associée à de nombreuses maladies héréditaires, ainsi qu'à de nombreux cancers chez l'enfant et l'adulte. Dans les cellules somatiques, les différences d'expression des allèles réciproques H19 et Ig12 est sous le contrôle d'une région ICR (Imprinting Control Region). La méthylation de cette région ICR régule l'ancrage de la protéine à douze doigts de zinc CTCF, qui se lie spécifiquement à l'ICR maternel non-méthylé, atténuant ainsi l'expression de Igf2, alors qu'elle ne s'ancre pas à l'ICR paternel méthyle. Le mécanisme qui accompagne la méthylation initiale de la région ICR durant la gamétogenèse n'a toujours pas été élucidé. L'hypothèse actuelle propose que la différence de méthylation entre l'ADN maternel et paternel résulte de l'expression de protéines propres aux zones germinales. Notre laboratoire a récemment identifié une nouvelle protéine à douze doigts de zinc, CTCF-T (aussi dénommée CTCFL et BORRIS), qui est exprimée uniquement dans les cellules germinales mâles, dont la partie à douze doigts de zinc est fortement homologue à la protéine CTCF. La séquence d'acides aminés de part et d'autre de cette région est quant à elle très divergente, ce qui implique que CTCF-T se lie sans doute au même ADN cible que CTCF, mais possède des fonctions différentes. De plus, l'expression de CTCF-T et de CTCF s'oppose mutuellement; l'expression de la protéine CTCF-T (cellules CTCF-T positives, CTCF negatives) qui a lieu pendant la spermatogenèse coïncide avec la reprogrammation épigénétique, notamment la méthylation de novo de l'ADN. La présente étude démontre le rôle essentiel joué par la protéine CTCF-T dans l'acquisition de l'empreinte génomique parentale. Nous montrons ici que CTCF-T s'associe in vivo avec les régions ICR des loci Igf2/H19 et Dlk/Gt12. Nous avons également identifié deux nouvelles protéines qui interagissent avec CTCF-T : une protéine arginine méthyl transférase PRMT7, et un variant de l'histone H2A, riche en arginine, que nous avons dénommé trH2A. Ces interactions ont été analysées plus en détail, et confinnent que ces deux protéines s'associent avec la région N-terminale de CTCF-T. Aussi, nous présentons une interaction de la région N-terminale de CTCF-T avec les histones H1, H2, et H3. Ces résultats suggèrent que CTCF-T est une protéine qui se lie spécifiquement aux régions ICR, qui s'associe avec différents histones et qui recrute PRMT7. PRMT7 possède une activité méthyl-tansférase envers les histones. Il a été montré que la méthylation des histones marque certains endroits de la chromatine, dirigeant ainsi la méthylation de l'ADN. Notre hypothèse est donc la suivante : la protéine CTCF-T sert de base qui dirige la méthylation des histones par PRMT7 dans les régions ICR, ce qui contribue à marquer la chromatine pour le recrutement de nouvelles méthyl transférases pour méthyler l'ADN. Afin de valider cette hypothèse, nous avons développé un système de méthylation de l'ADN in vivo, dans des oeufs de Xenopus laevis, dans le noyau desquels nous avons mico-injecté la région ICR du locus H19, ainsi que différents vecteurs d'expression pour CTCF-T, PRMT7, et les de novo méthyl transférases (Dnmt3a, Dnmt3b et Dnmt3L). Les CpGs méthyles de la région ICR du locus H19 ont été analysé 48 et 72 heures après l'injection. Cette technique nous a permis de démontrer que les CpGs de la région ICR sont méthyles en présence de CTCF-T et de PRMT7, tandis que les contrôles injectés seulement avec la région ICR ne présentent aucun signe de méthylation. De plus, nous démontrons pour la première fois que la protéine méthyl transférase Dnmt3L est déterminant pour l'établissement de l'empreinte génomique parentale au niveau de la région ICR du locus H19. Aussi, nous confirmons que les activités méthyl transférases de Dnmt3a et Dnmt3b sont complémentaires. Nos données indiquent que les trois protéines Dnmt3 sont impliquées dans la méthylation de l'ADN. En conclusion, nous proposons un mécanisme responsable de la mise en place de nouvelles empreintes génomiques pendant la spermatogenèse : le complexe protéique CTCF-T/PRMT7 dirige la méthylation des histones aboutissant à la méthylation de novo de l'ADN au locus H19.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The orexigenic neurotransmitter neuropeptide Y (NPY) plays a central role in the hypothalamic control of food intake and energy balance. NPY also exerts an inhibition of the gonadotrope axis that could be important in the response to poor metabolic conditions. In contrast, leptin provides an anorexigenic signal to centrally control the body needs in energy. Moreover, leptin contributes to preserve adequate reproductive functions by stimulating the activity of the gonadotrope axis. It is of interest that hypothalamic NPY represents a primary target of leptin actions. To evaluate the importance of the NPY Y1 and Y5 receptors in the downstream pathways modulated by leptin and controlling energy metabolism as well as the activity of the gonadotrope axis, we studied the effects of leptin administration on food intake and reproductive functions in mice deficient for the expression of either the Y1 or the Y5 receptor. Furthermore, the role of the Y1 receptor in leptin resistance was determined in leptin-deficient ob/ob mice bearing a null mutation in the NPY Y1 locus. Results point to a crucial role for the NPY Y1 receptor in mediating the NPY pathways situated downstream of leptin actions and controlling food intake, the onset of puberty, and the maintenance of reproductive functions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Arenaviruses perturb innate antiviral defense by blocking induction of type I interferon (IFN) production. Accordingly, the arenavirus nucleoprotein (NP) was shown to block activation and nuclear translocation of interferon regulatory factor 3 (IRF3) in response to virus infection. Here, we sought to identify cellular factors involved in innate antiviral signaling targeted by arenavirus NP. Consistent with previous studies, infection with the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) prevented phosphorylation of IRF3 in response to infection with Sendai virus, a strong inducer of the retinoic acid-inducible gene I (RIG-I)/mitochondrial antiviral signaling (MAVS) pathway of innate antiviral signaling. Using a combination of coimmunoprecipitation and confocal microscopy, we found that LCMV NP associates with the IκB kinase (IKK)-related kinase IKKε but that, rather unexpectedly, LCMV NP did not bind to the closely related TANK-binding kinase 1 (TBK-1). The NP-IKKε interaction was highly conserved among arenaviruses from different clades. In LCMV-infected cells, IKKε colocalized with NP but not with MAVS located on the outer membrane of mitochondria. LCMV NP bound the kinase domain (KD) of IKKε (IKBKE) and blocked its autocatalytic activity and its ability to phosphorylate IRF3, without undergoing phosphorylation. Together, our data identify IKKε as a novel target of arenavirus NP. Engagement of NP seems to sequester IKKε in an inactive complex. Considering the important functions of IKKε in innate antiviral immunity and other cellular processes, the NP-IKKε interaction likely plays a crucial role in arenavirus-host interaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

MHC class II (MHCII) molecules play a pivotal role in the induction and regulation of immune responses. The transcriptional coactivator class II transactivator (CIITA) controls MHCII expression. The CIITA gene is regulated by three independent promoters (pI, pIII, pIV). We have generated pIV knockout mice. These mice exhibit selective abrogation of interferon (IFN)-gamma-induced MHCII expression on a wide variety of non-bone marrow-derived cells, including endothelia, epithelia, astrocytes, and fibroblasts. Constitutive MHCII expression on cortical thymic epithelial cells, and thus positive selection of CD4(+) T cells, is also abolished. In contrast, constitutive and inducible MHCII expression is unaffected on professional antigen-presenting cells, including B cells, dendritic cells, and IFN-gamma-activated cells of the macrophage lineage. pIV(-/-) mice have thus allowed precise definition of CIITA pIV usage in vivo. Moreover, they represent a unique animal model for studying the significance and contribution of MHCII-mediated antigen presentation by nonprofessional antigen-presenting cells in health and disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The investigation of perceptual and cognitive functions with non-invasive brain imaging methods critically depends on the careful selection of stimuli for use in experiments. For example, it must be verified that any observed effects follow from the parameter of interest (e.g. semantic category) rather than other low-level physical features (e.g. luminance, or spectral properties). Otherwise, interpretation of results is confounded. Often, researchers circumvent this issue by including additional control conditions or tasks, both of which are flawed and also prolong experiments. Here, we present some new approaches for controlling classes of stimuli intended for use in cognitive neuroscience, however these methods can be readily extrapolated to other applications and stimulus modalities. Our approach is comprised of two levels. The first level aims at equalizing individual stimuli in terms of their mean luminance. Each data point in the stimulus is adjusted to a standardized value based on a standard value across the stimulus battery. The second level analyzes two populations of stimuli along their spectral properties (i.e. spatial frequency) using a dissimilarity metric that equals the root mean square of the distance between two populations of objects as a function of spatial frequency along x- and y-dimensions of the image. Randomized permutations are used to obtain a minimal value between the populations to minimize, in a completely data-driven manner, the spectral differences between image sets. While another paper in this issue applies these methods in the case of acoustic stimuli (Aeschlimann et al., Brain Topogr 2008), we illustrate this approach here in detail for complex visual stimuli.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PIKfyve is a kinase encoded by pip5k3 involved in phosphatidylinositols (PdtIns) pathways. These lipids building cell membranes have structural functions and are involved in complex intracellular regulations. Mutations in human PIP5K3 are associated with François-Neetens mouchetée fleck corneal dystrophy [Li, S., Tiab, L., Jiao, X., Munier, F.L., Zografos, L., Frueh, B.E., Sergeev, Y., Smith, J., Rubin, B., Meallet, M.A., Forster, R.K., Hejtmancik, J.F., Schorderet, D.F., 2005. Mutations in PIP5K3 are associated with François-Neetens mouchetee fleck corneal dystrophy. Am. J. Hum. Genet. 77, 54-63]. We cloned the zebrafish pip5k3 and report its molecular characterization and expression pattern in adult fish as well as during development. The zebrafish PIKfyve was 70% similar to the human homologue. The gene encompassed 42 exons and presented four alternatively spliced variants. It had a widespread expression in the adult organs and was localized in specific cell types in the eye as the cornea, lens, ganglion cell layer, inner nuclear layer and outer limiting membrane. Pip5k3 transcripts were detected in early cleavage stage embryos. Then it was uniformly expressed at 10 somites, 18 somites and 24 hpf. Its expression was then restricted to the head region at 48 hpf, 72 hpf and 5 dpf and partial expression was found in somites at 72 hpf and 5 dpf. In situ on eye sections at 3 dpf showed a staining mainly in lens, outer limiting membrane, inner nuclear layer and ganglion cell layer. A similar expression pattern was found in the eye at 5 dpf. A temporal regulation of the spliced variants was observed at 1, 3 and 5 dpf and they were also found in the adult eye.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

SUMMARY: EBBP is a poorly characterized member of the RBCC/TRIM family (RING finger B-box coiled-coilltripartite motif). It is ubiquitously expressed, but particularly high levels are found in keratinocytes. There is evidence that EBBP is involved in inflammatory processes, since it can interact with pro-interleukin-1 ß (prolL-1 ß) in human macrophages and keratinocytes, and its downregulation results in reduced secretion of IL-1 ß. IL-1ß activation and secretion requires the proteolytic cleavage of prolL-1ß by caspase-1, which in turn is actìvated by a protein complex called the inflammasome. As it has been demonstrated that EBBP can bind two different proteins of the inflammasome (NALP-1 and caspase 1), we assumed that EBBP plays a role in the regulation of inflammation and that the inflammasome, which has as yet only been described in ínflammatory cells, may also exist in keratinocytes. Indeed, I could show in my thesis that the inflammasome components are expressed in human keratinócytes at the RNA and protein level and also in vivo in human epidermis. After irradiation with a physiological dose of UVB, keratinocytes activated prolL-1ß and secreted prolL-1 a, IL-1 ß, prolL-18 and inflammasome proteins, although all these proteins lack a classical signal peptide. The secretion was dependent on caspase-1 activity, but not on de novo protein synthesis. Knock-down of NALP1 and -3, caspase-1 and -5, EBBP and Asc strongly reduced the secretion of IL-1 ß, demonstrating that also in keratinocytes inflammasome proteins are directly involved in maturation of this cytokine. These results demonstrate for the first time the presence of an active inflammasome in non-professional immune cells. Moreover, they show that UV irradiation is a stimulus for inflammasome activation in keratinocytes. For the analysis of the ín vivo functions of EBBP, transgenic mice overexpressing EBBP in the epidermis were generated. To examine the influence of EBBP overexpression on inflammatory processes, we subjected the mice to different challenges, which induce inflammation. Wound-healing, UVB irradiation and delayed hypersensitivity were tested, but we did not observe any phenotype in the K14-EBBP mice. Besides, a conditional ebbp knockout mouse has been obtained, which will allow to determine the effects of EBBP gene deletion in different tissues and organs. RESUME: EBBP est un membre encore mal connu de la famille des RBCC/TRIM (RING finger B-box coiled-coil/tripartite motif). Il est exprimé de manière ubiquitaire, et en particulier dans les kératinocytes. EBBP étant capable d'interagir avec la prointerleukine-1 ß (prolL-1 ß) dans les macrophages et les kératinocytes humains et de réguler la sécrétion de l'IL-1 ß, il est très probable que cette protéine est impliquée dans l'inflammation. L'activation et la sécrétion de l'IL-1 ß requièrent le clivage protéolytique de son précurseur prolL-1ß par la caspase-1, qui est elle-même activée par un complexe protéique appelé l'inflammasome. Comme il a été démontré qu'EBBP peut lier deux protéines de l'inflammasome (NALP-1 et caspase-1), nous avons émis l'hypothèse qu'EBBP joue un rôle dans la régulation de l'inflammation et que l'inflammasome, jusqu'ici décrit exclusivement dans des cellules inflammatoires, existe dans les kératinocytes. En effet, j'ai pu montrer dans ma thèse que les composants de l'inflammasome sont exprimés dans les kératinocytes humains ainsi que in vivo dans l'épiderme humain. Après irradiation avec une dose, physiologique d'UVB, les kératinocytes activent la prolL-1 ß et sécrètent la prolL-1a, l'IL-1 ß, la prolL-18 et des protéines de l'inflammasome, bien que toutes ces protéines soient dépourvues de peptide signal. La sécrétion dépend de la caspase-1 mais pas de la synthèse protéique de novo. Le knock-down de NALP-1 et -3, des caspase-1 et -5, d'EBBP et d'Asc réduit de manière marquée la sécrétion d'IL-1 ß, démontrant que dans les kératinocytes également, les protéines de l'inflammasome sont impliquées directement dans la maturation de cette cytokine. Ces résultats démontrent pour la première fois la présence d'un inflammasome actif dans des cellules immunitaires non professionnelles. De plus, ils montrent que l'irradiation aux UV est un stimulus pour l'activation de l'inflammasome dans les kératinocytes. Pour l'analyse des fonctions d'EBBP in vivo, nous avons généré des souris transgéniques qui surexpriment EBBP dans l'épiderme. En vue d'examiner l'influence de la surexpression d'EBBP sur le processus inflammatoire, nous avons soumis ces souris à differents modèles d'inflammation. Nous avons testé cicatrisation, UVB et hypersensibilité retardée, mais n'avons pas observé de phénotype chez les souris transgéniques. En parallèle, nous avons également généré des souris knock-out pour ebbp qui devraient nous permettre de déterminer les effets de la suppression d'EBBP dans différents tissus et organes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lymphocytes regulate their responsiveness to IL-2 through the transcriptional control of the IL-2R alpha gene, which encodes a component of the high affinity IL-2 receptor. In the mouse IL-2R alpha gene this control is exerted via two regulatable elements, a promoter proximal region, and an IL-2-responsive enhancer (IL-2rE) 1.3 kb upstream. In vitro and in vivo functional analysis of the IL-2rE in the rodent thymic lymphoma-derived, CD4- CD8- cell line PC60 demonstrated that three separate elements, sites I, II, and III, were necessary for IL-2 responsiveness; these three sites demonstrate functional cooperation. Site III contains a consensus binding motif for members of the Ets family of transcription factors. Here we demonstrate that Elf-1, an Ets-like protein, binds to site III and participates in IL-2 responsiveness. In vitro site III forms a complex with a protein constitutively present in nuclear extracts from PC60 cells as well as from normal CD4- CD8- thymocytes. We have identified this molecule as Elf-1 according to a number of criteria. The complex possesses an identical electrophoretic mobility to that formed by recombinant Elf-1 protein and is super-shifted by anti-Elf-1 antibodies. Biotinylated IL-2rE probes precipitate Elf-1 from PC60 extracts provided site III is intact and both recombinant and PC60-derived proteins bind with the same relative affinities to different mutants of site III. In addition, by introducing mutations into the core of the site III Ets-like motif and comparing the corresponding effects on the in vitro binding of Elf-1 and the in vivo IL-2rE activity, we provide strong evidence that Elf-1 is directly involved in IL-2 responsiveness. The nature of the functional cooperativity observed between Elf-1 and the factors binding sites I and II remains unresolved; experiments presented here however suggest that this effect may not require direct interactions between the proteins binding these three elements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Four West Malaysian shrew populations of the genus Crocidura were investigated through their karyotype and allozyme variations, and, in part, by interfertility experiments. Two different karyotypes characterize these shrews. The first, restricted to the Cameron Highlands (Peninsular Malaysia), invariably has 2n = 40 chromosomes but a varying fundamental number (FN = 54-58). The second karyotype shows a fundamental number of 62-68 and a polymorphic chromosomal number of 2n = 38, 39 or 40, a rare event in the genus Crocidura. Thus both can be distinguished by either a low or a higher number of meta- and submetacentric elements. In heterospecific breeding experiments, mutual avoidance was observed suggesting prezygotic barriers, whereas intraspecific pairs produced 13 liters (mean 2.1 young). Furthermore, our biochemical results indicate that both karyotypes correspond to a relatively ancient separation (Nei's D = 0.354), an amount of genetic differentiation comparable to the distance separating them from the West Palearctic C. russula (D = 0.429-0.583). In contrast, conspecific island and mainland Malaysian shrews possessing the second karyotype had only one fixed allelic difference over the 35 loci surveyed. The problem of naming the two biological species remains unsolved and requires further comparative investigations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Notch proteins are important in binary cell-fate decisions and inhibiting differentiation in many developmental systems, and aberrant Notch signaling is associated with tumorigenesis. The role of Notch signaling in mammalian skin is less well characterized and is mainly based on in vitro studies, which suggest that Notch signaling induces differentiation in mammalian skin. Conventional gene targeting is not applicable to establishing the role of Notch receptors or ligands in the skin because Notch1-/- embryos die during gestation. Therefore, we used a tissue-specific inducible gene-targeting approach to study the physiological role of the Notch1 receptor in the mouse epidermis and the corneal epithelium of adult mice. Unexpectedly, ablation of Notch1 results in epidermal and corneal hyperplasia followed by the development of skin tumors and facilitated chemical-induced skin carcinogenesis. Notch1 deficiency in skin and in primary keratinocytes results in increased and sustained expression of Gli2, causing the development of basal-cell carcinoma-like tumors. Furthermore, Notch1 inactivation in the epidermis results in derepressed beta-catenin signaling in cells that should normally undergo differentiation. Enhanced beta-catenin signaling can be reversed by re-introduction of a dominant active form of the Notch1 receptor. This leads to a reduction in the signaling-competent pool of beta-catenin, indicating that Notch1 can inhibit beta-catenin-mediated signaling. Our results indicate that Notch1 functions as a tumor-suppressor gene in mammalian skin.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dynamical analysis of large biological regulatory networks requires the development of scalable methods for mathematical modeling. Following the approach initially introduced by Thomas, we formalize the interactions between the components of a network in terms of discrete variables, functions, and parameters. Model simulations result in directed graphs, called state transition graphs. We are particularly interested in reachability properties and asymptotic behaviors, which correspond to terminal strongly connected components (or "attractors") in the state transition graph. A well-known problem is the exponential increase of the size of state transition graphs with the number of network components, in particular when using the biologically realistic asynchronous updating assumption. To address this problem, we have developed several complementary methods enabling the analysis of the behavior of large and complex logical models: (i) the definition of transition priority classes to simplify the dynamics; (ii) a model reduction method preserving essential dynamical properties, (iii) a novel algorithm to compact state transition graphs and directly generate compressed representations, emphasizing relevant transient and asymptotic dynamical properties. The power of an approach combining these different methods is demonstrated by applying them to a recent multilevel logical model for the network controlling CD4+ T helper cell response to antigen presentation and to a dozen cytokines. This model accounts for the differentiation of canonical Th1 and Th2 lymphocytes, as well as of inflammatory Th17 and regulatory T cells, along with many hybrid subtypes. All these methods have been implemented into the software GINsim, which enables the definition, the analysis, and the simulation of logical regulatory graphs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peroxisome proliferator-activated receptors, PPARs, (NR1C) are nuclear hormone receptors implicated in energy homeostasis. Upon activation, these ligand-inducible transcription factors stimulate gene expression by binding to the promoter of target genes. The different structural domains of PPARs are presented in terms of activation mechanisms, namely ligand binding, phosphorylation, and cofactor interaction. The specificity of ligands, such as fatty acids, eicosanoids, fibrates and thiazolidinediones (TZD), is described for each of the three PPAR isotypes, alpha (NR1C1), beta (NR1C2) and gamma (NR1C3), so as the differential tissue distribution of these isotypes. Finally, general and specific functions of the PPAR isotypes are discussed, namely their implication in the control of inflammatory responses, cell proliferation and differentiation, the roles of PPARalpha in fatty acid catabolism and of PPARgamma in adipogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disorder characterized by progressive degeneration of upper and lower motor neurons. It is mostly sporadic, but about 2% of cases are associated with mutations in the gene encoding the enzyme superoxide dismutase 1 (SOD1). A major constraint to the comprehension of the pathogenesis of ALS has been long represented by the conviction that this disorder selectively affects motor neurons in a cell-autonomous manner. However, the failure to identify the events underlying the neurodegenerative process and the increased knowledge of the complex cellular interactions necessary for the correct functioning of the CNS has recently focused the attention on the contribution to neurodegeneration of glial cells, including astrocytes. Astrocytes can hurt motor neurons directly by secreting neurotoxic factors, but they can also play a deleterious role indirectly by losing functions that are supportive for neurons. Recently, we reported that a subpopulation of astrocytes degenerates in the spinal cord of hSOD1G93A transgenic mouse model of ALS. Mechanistic studies in cultured astrocytes revealed that such effect is mediated by the excitatory amino acid glutamate.On the bsis of these observations, we next used the established cell culture model as a tool to screen the glioprotective effect of innovative drugs, namely cell-permeable therapeutics. These consist of peptidic effector moieties coupled to the selective intracellular peptide transporter TAT protein. We initially validated the usefulness of these molecules demonstrating that a control fluorescent peptide enters astrocytes in culture and is retained within the cells up to 24-48 h, according to the timing of our cytotoxicity experiments. We then tested the impact of specific intracellular peptides with antiapoptotic properties on glutamate-treated hSOD1G93A- expressing astrocytes and we identified one molecule that protects the cells from death. Chronic treatment of ALS mice with this peptide had a positive impact on the outcome of the disease.