238 resultados para cognition, metacognition
Resumo:
In cognition, common factors play a crucial role. For example, different types of intelligence are highly correlated, pointing to a common factor, which is often called g. One might expect that a similar common factor would also exist for vision. Surprisingly, no one in the field has addressed this issue. Here, we provide the first evidence that there is no common factor for vision. We tested 40 healthy students' performance in six basic visual paradigms: visual acuity, vernier discrimination, two visual backward masking paradigms, Gabor detection, and bisection discrimination. One might expect that performance levels on these tasks would be highly correlated because some individuals generally have better vision than others due to superior optics, better retinal or cortical processing, or enriched visual experience. However, only four out of 15 correlations were significant, two of which were nontrivial. These results cannot be explained by high intraobserver variability or ceiling effects because test-retest reliability was high and the variance in our student population is commensurate with that from other studies with well-sighted populations. Using a variety of tests (e.g., principal components analysis, Bayes theorem, test-retest reliability), we show the robustness of our null results. We suggest that neuroplasticity operates during everyday experience to generate marked individual differences. Our results apply only to the normally sighted population (i.e., restricted range sampling). For the entire population, including those with degenerate vision, we expect different results.
Resumo:
The investigation of perceptual and cognitive functions with non-invasive brain imaging methods critically depends on the careful selection of stimuli for use in experiments. For example, it must be verified that any observed effects follow from the parameter of interest (e.g. semantic category) rather than other low-level physical features (e.g. luminance, or spectral properties). Otherwise, interpretation of results is confounded. Often, researchers circumvent this issue by including additional control conditions or tasks, both of which are flawed and also prolong experiments. Here, we present some new approaches for controlling classes of stimuli intended for use in cognitive neuroscience, however these methods can be readily extrapolated to other applications and stimulus modalities. Our approach is comprised of two levels. The first level aims at equalizing individual stimuli in terms of their mean luminance. Each data point in the stimulus is adjusted to a standardized value based on a standard value across the stimulus battery. The second level analyzes two populations of stimuli along their spectral properties (i.e. spatial frequency) using a dissimilarity metric that equals the root mean square of the distance between two populations of objects as a function of spatial frequency along x- and y-dimensions of the image. Randomized permutations are used to obtain a minimal value between the populations to minimize, in a completely data-driven manner, the spectral differences between image sets. While another paper in this issue applies these methods in the case of acoustic stimuli (Aeschlimann et al., Brain Topogr 2008), we illustrate this approach here in detail for complex visual stimuli.
Resumo:
PRINCIPLES: Patients with carotid artery stenosis (CAS) are at risk of ipsilateral stroke and chronic compromise of cerebral blood flow. It is under debate whether the hypo-perfusion or embolism in CAS is directly related to cognitive impairment. Alternatively, CAS may be a marker for underlying risk factors, which themselves influence cognition. We aimed to determine cognitive performance level and the emotional state of patients with CAS. We hypo-thesised that patients with high grade stenosis, bilateral stenosis, symptomatic patients and/or those with relevant risk factors would suffer impairment of their cognitive performance and emotional state. METHODS: A total of 68 patients with CAS of ≥70% were included in a prospective exploratory study design. All patients underwent structured assessment of executive functions, language, verbal and visual memory, motor speed, anxiety and depression. RESULTS: Significantly more patients with CAS showed cognitive impairments (executive functions, word production, verbal and visual memory, motor speed) and anxiety than expected in a normative sample. Bilateral and symptomatic stenosis was associated with slower processing speed. Cognitive performance and anxiety level were not influenced by the side and the degree of stenosis or the presence of collaterals. Factors associated with less co-gnitive impairment included higher education level, female gender, ambidexterity and treated hypercholesterolemia. CONCLUSIONS: Cognitive impairment and increased level of anxiety are frequent in patients with carotid stenosis. The lack of a correlation between cognitive functioning and degree of stenosis or the presence of collaterals, challenges the view that CAS per se leads to cognitive impairment.
Resumo:
The presence of von Economo neurons (VENs) in the frontoinsular cortex (FI) has been linked to a possible role in the integration of bodily feelings, emotional regulation, and goal-directed behaviors. They have also been implicated in fast intuitive evaluation of complex social situations. Several studies reported a decreased number of VENs in neuropsychiatric diseases in which the "embodied" dimension of social cognition is markedly affected. Neuropathological analyses of VENs in patients with autism are few and did not report alterations in VEN numbers. In this study we re-evaluated the possible presence of changes in VEN numbers and their relationship with the diagnosis of autism. Using a stereologic approach we quantified VENs and pyramidal neurons in layer V of FI in postmortem brains of four young patients with autism and three comparably aged controls. We also investigated possible autism-related differences in FI layer V volume. Patients with autism consistently had a significantly higher ratio of VENs to pyramidal neurons (p=0.020) than control subjects. This result may reflect the presence of neuronal overgrowth in young patients with autism and may also be related to alterations in migration, cortical lamination, and apoptosis. Higher numbers of VENs in the FI of patients with autism may also underlie a heightened interoception, described in some clinical observations.
Resumo:
Among the numerous clinical syndromes observed after severe traumatic head injury, post-traumatic mutism is a disorder rarely reported in adults and not studied in any detail in children. We report seven children between the ages of 3 1/2 and 14 years who sustained severe head injury and developed post-traumatic mutism. We aim to give a precise clinical characterization of this disorder, discuss differential diagnosis and correlations with brain imaging and suggest its probable neurological substrate. After a coma lasting from 5 to 25 days, the seven patients who suffered from post-traumatic mutism went through a period of total absence of verbal production lasting from 5 to 94 days, associated with the recovery of non-verbal communication skills and emotional vocalization. During the first days after the recovery of speech, all patients were able to produce correct small sentences with a hypophonic and monotonous voice, moderate dysarthria, word finding difficulties but no signs of aphasia, and preserved oral comprehension. The neurological signs in the acute phase (III nerve paresis in three of seven patients, signs of autonomic dysfunctions in five of seven patients), the results of the brain imaging and the experimental animal data all suggest the involvement of mesencephalic structures as playing a key role in the aetiology of post-traumatic mutism.
Resumo:
Converging evidence favors an abnormal susceptibility to oxidative stress in schizophrenia. Decreased levels of glutathione (GSH), the major cellular antioxidant and redox regulator, was observed in cerebrospinal-fluid and prefrontal cortex of patients. Importantly, abnormal GSH synthesis of genetic origin was observed: Two case-control studies showed an association with a GAG trinucleotide repeat (TNR) polymorphism in the GSH key synthesizing enzyme glutamate-cysteine-ligase (GCL) catalytic subunit (GCLC) gene. The most common TNR genotype 7/7 was more frequent in controls, whereas the rarest TNR genotype 8/8 was three times more frequent in patients. The disease associated genotypes (35% of patients) correlated with decreased GCLC protein, GCL activity and GSH content. Similar GSH system anomalies were observed in early psychosis patients. Such redox dysregulation combined with environmental stressors at specific developmental stages could underlie structural and functional connectivity anomalies. In pharmacological and knock-out (KO) models, GSH deficit induces anomalies analogous to those reported in patients. (a) morphology: spine density and GABA-parvalbumine immunoreactivity (PV-I) were decreased in anterior cingulate cortex. KO mice showed delayed cortical PV-I at PD10. This effect is exacerbated in mice with increased DA from PD5-10. KO mice exhibit cortical impairment in myelin and perineuronal net known to modulate PV connectivity. (b) physiology: In cultured neurons, NMDA response are depressed by D2 activation. In hippocampus, NMDA-dependent synaptic plasticity is impaired and kainate induced g-oscillations are reduced in parallel to PV-I. (c) cognition: low GSH models show increased sensitivity to stress, hyperactivity, abnormal object recognition, olfactory integration and social behavior. In a clinical study, GSH precursor N-acetyl cysteine (NAC) as add on therapy, improves the negative symptoms and decreases the side effects of antipsychotics. In an auditory oddball paradigm, NAC improves the mismatched negativity, an evoked potential related to pre-attention and to NMDA receptors function. In summary, clinical and experimental evidence converge to demonstrate that a genetically induced dysregulation of GSH synthesis combined with environmental insults in early development represent a major risk factor contributing to the development of schizophrenia Conclusion Based on these data, we proposed a model for PSIP1 promoter activity involving a complex interplay between yet undefined regulatory elements to modulate gene expression.
Resumo:
Most investigations on prognosis of status epilepticus (SE) have focused on mortality, and suggest that outcome basically depends on the etiological and biological background. However, some recent studies also suggest that SE itself could be an independent predictor of death. Conversely, very little work has been published concerning the impact of SE on cognition. As compared with a first brief epileptic seizure, an incident SE episode seems to increase the risk of developing epilepsy.
Resumo:
The population of industrialized societies has increased tremendously over the last century, raising the question on how an enhanced age affects cognition. The relevance of two models of healthy aging are contrasted in the present study that both target the functioning of the two cerebral hemispheres. The right hemi-aging model (RHAM) assumes that functions of the right hemisphere decline before those of the left hemisphere. The Hemispheric Asymmetry Reduction in Older Adults (HAROLD) Model suggests that the contralateral hemisphere supports the normally superior hemisphere in a given task resulting in a reduced hemispheric asymmetry overall. In a mixed design, 20 younger and 20 older adults performed both a task assessing a left (lateralized lexical decisions) and a right (sex decisions on chimeric faces) hemisphere advantage. Results indicated that lateralized performance in both tasks was attenuated in older as compared to younger adults, in particular in men. These observations support the HAROLD model. Future studies should investigate whether this reduced functional hemispheric asymmetry in older age results from compensatory processes or from a process of de-differentiation
Resumo:
BACKGROUND: The debate about a possible relationship between aerobic fitness and motor skills with cognitive development in children has recently re-emerged, because of the decrease in children's aerobic fitness and the concomitant pressure of schools to enhance cognitive performance. As the literature in young children is scarce, we examined the cross-sectional and longitudinal relationship of aerobic fitness and motor skills with spatial working memory and attention in preschool children. METHODS: Data from 245 ethnically diverse preschool children (mean age: 5.2 (0.6) years, girls: 49.4%) analyzed at baseline and 9 months later. Assessments included aerobic fitness (20 m shuttle run) and motor skills with agility (obstacle course) and dynamic balance (balance beam). Cognitive parameters included spatial working memory (IDS) and attention (KHV-VK). All analyses were adjusted for age, sex, BMI, migration status, parental education, native language and linguistic region. Longitudinal analyses were additionally adjusted for the respective baseline value. RESULTS: In the cross-sectional analysis, aerobic fitness was associated with better attention (r=0.16, p=0.03). A shorter time in the agility test was independently associated with a better performance both in working memory (r=-0.17, p=0.01) and in attention (r=-0.20, p=0.01). In the longitudinal analyses, baseline aerobic fitness was independently related to improvements in attention (r=0.16, p=0.03), while baseline dynamic balance was associated with improvements in working memory (r=0.15, p=0.04). CONCLUSIONS: In young children, higher baseline aerobic fitness and motor skills were related to a better spatial working memory and/or attention at baseline, and to some extent also to their future improvements over the following 9 months. TRIAL REGISTRATION: clinicaltrials.gov NCT00674544.
Resumo:
AIMS: The purpose of the present study was to probe sensitivity to potentially misleading negative feedback on cognitive tasks as a possible mechanism of cognitive impairment in elderly patients with mild depression. METHODS: A total of 22 mildly depressed elderly subjects were compared to 22 healthy controls, using a computerized Tower-of-London task. RESULTS: Failure and magnitude of failure were significantly worse after negative but not positive feedback. Depression predicted failure after negative feedback but not the magnitude of failure. Neither failure nor magnitude of failure increased as a consequence of repeated negative feedback. CONCLUSIONS: Altered sensitivity to negative feedback occurs in mild late-life unipolar depression and may represent a subtle context-specific phenomenon.
Resumo:
BACKGROUND: Classically, clinical trials are based on the placebo-control design. Our aim was to analyze the placebo effect in Huntington's disease. METHODS: Placebo data were obtained from an international, longitudinal, placebo-controlled trial for Huntington's disease (European Huntington's Disease Initiative Study Group). One-hundred and eighty patients were evaluated using the Unified Huntington Disease Rating Scale over 36 months. A placebo effect was defined as an improvement of at least 50% over baseline scores in the Unified Huntington Disease Rating Scale, and clinically relevant when at least 10% of the population met it. RESULTS: Only behavior showed a significant placebo effect, and the proportion of the patients with placebo effect ranged from 16% (first visit) to 41% (last visit). Nondepressed patients with better functional status were most likely to be placebo-responders over time. CONCLUSIONS: In Huntington's disease, behavior seems to be more vulnerable to placebo than overall motor function, cognition, and function
Resumo:
INTRODUCTION: Central nervous system prophylaxis of childhood acute lymphoblastic leukemia has dropped rates of relapses but has been associated with neurotoxicity and imaging abnormalities. Predictors of neurotoxicity are lacking, because of inconsistency between clinical symptoms and imaging. Some have suggested that cerebrospinal fluid myelin basic protein (MBP) levels to be of potential interest. A retrospective analysis of MBP levels in correlation with clinical and radiologic data is presented. MATERIALS AND METHODS: MBP levels obtained at the time of intrathecals, charts, and neuroradiology reports were retrospectively analyzed. Academic achievement data were obtained from phone contacts with patients and families. RESULTS: We retrieved 1248 dosages of MBP in 83 patients, 381 neurologic examinations in 34 patients and 69 neuroradiologic investigations in 27 patients. Fifty-two patients had abnormal MBP levels. Radiologic anomalies were present in 47% of those investigated, 14% of them having school difficulties. Proportions of patients with school difficulties in the groups with abnormal MBP levels but no radiologic anomalies or with no radiologic investigations were 0% and 3%, respectively, which was lower than in the group of patients with normal MBP levels (100%, 22%, and 5%, respectively). DISCUSSION: Notwithstanding the retrospective character of our study, we conclude that there is limited usefulness of systematic dosage of MBP as indicator of treatment-induced neurotoxicity in acute lymphoblastic leukemia patients.
Resumo:
Learning and immunity are two adaptive traits with roles in central aspects of an organism's life: learning allows adjusting behaviours in changing environments, while immunity protects the body integrity against parasites and pathogens. While we know a lot about how these two traits interact in vertebrates, the interactions between learning and immunity remain poorly explored in insects. During my PhD, I studied three possible ways in which these two traits interact in the model system Drosophila melanogaster, a model organism in the study of learning and in the study of immunity. Learning can affect the behavioural defences against parasites and pathogens through the acquisition of new aversions for contaminated food for instance. This type of learning relies on the ability to associate a food-related cue with the visceral sickness following ingestion of contaminated food. Despite its potential implication in infection prevention, the existence of pathogen avoidance learning has been rarely explored in invertebrates. In a first part of my PhD, I tested whether D. melanogaster, which feed on food enriched in microorganisms, innately avoid the orally-acquired 'novel' virulent pathogen Pseudomonas entomophila, and whether it can learn to avoid it. Although flies did not innately avoid this pathogen, they decreased their preference for contaminated food over time, suggesting the existence of a form of learning based likely on infection-induced sickness. I further found that flies may be able to learn to avoid an odorant which was previously associated with the pathogen, but this requires confirmation with additional data. If this is confirmed, this would be the first time, to my knowledge, that pathogen avoidance learning is reported in an insect. The detrimental effect of infection on cognition and more specifically on learning ability is well documented in vertebrates and in social insects. While the underlying mechanisms are described in detail in vertebrates, experimental investigations are lacking in invertebrates. In a second part of my PhD, I tested the effect of an oral infection with natural pathogens on associative learning of D. melanogaster. By contrast with previous studies in insects, I found that flies orally infected with the virulent P. entomophila learned better the association of an odorant with mechanical shock than uninfected flies. The effect seems to be specific to a gut infection, and so far I have not been able to draw conclusions on the respective contributions of the pathogen's virulence and of the flies' immune activity in this effect. Interestingly, infected flies may display an increased sensitivity to physical pain. If the learning improvement observed in infected flies was due partially to the activity of the immune system, my results would suggest the existence of physiological connections between the immune system and the nervous system. The basis of these connections would then need to be addressed. Learning and immunity are linked at the physiological level in social insects. Physiological links between traits often result from the expression of genetic links between these traits. However, in social insects, there is no evidence that learning and immunity may be involved in an evolutionary trade-off. I previously reported a positive effect of infection on learning in D. melanogaster. This might suggest that a positive genetic link could exist between learning and immunity. We tested this hypothesis with two approaches: the diallel cross design with inbred lines, and the isofemale lines design. The two approaches provided consistent results: we found no additive genetic correlation between learning and resistance to infection with the diallel cross, and no genetic correlation in flies which are not yet adapted to laboratory conditions in isofemale lines. Consistently with the literature, the two studies suggested that the positive effect of infection on learning I observed might not be reflected by a positive evolutionary link between learning and immunity. Nevertheless, the existence of complex genetic relationships between the two traits cannot be excluded. - L'apprentissage et l'immunité sont deux caractères à valeur adaptative impliqués dans des aspects centraux de la vie d'un organisme : l'apprentissage permet d'ajuster les comportements pour faire face aux changements de l'environnement, tandis que l'immunité protège l'intégrité corporelle contre les attaques des parasites et des pathogènes. Alors que les interactions entre l'apprentissage et l'immunité sont bien documentées chez les vertébrés, ces interactions ont été très peu étudiées chez les insectes. Pendant ma thèse, je me suis intéressée à trois aspects des interactions possibles entre l'apprentissage et l'immunité chez la mouche du vinaigre Drosophila melanogaster, qui est un organisme modèle dans l'étude à la fois de l'apprentissage et de l'immunité. L'apprentissage peut affecter les défenses comportementales contre les parasites et les pathogènes par l'acquisition de nouvelles aversions pour la nourriture contaminée par exemple. Ce type d'apprentissage repose sur la capacité à associer une caractéristique de la nourriture avec la maladie qui suit l'ingestion de cette nourriture. Malgré les implications potentielles pour la prévention des infections, l'évitement appris des pathogènes a été rarement étudié chez les invertébrés. Dans une première partie de ma thèse, j'ai testé si les mouches, qui se nourrissent sur des milieux enrichis en micro-organismes, évitent de façon innée un 'nouveau' pathogène virulent Pseudomonas entomophila, et si elles ont la capacité d'apprendre à l'éviter. Bien que les mouches ne montrent pas d'évitement inné pour ce pathogène, elles diminuent leur préférence pour de la nourriture contaminée dans le temps, suggérant l'existence d'une forme d'apprentissage basée vraisemblablement sur la maladie générée par l'infection. J'ai ensuite observé que les mouches semblent être capables d'apprendre à éviter une odeur qui était au préalable associée avec ce pathogène, mais cela reste à confirmer par la collecte de données supplémentaires. Si cette observation est confirmée, cela sera la première fois, à ma connaissance, que l'évitement appris des pathogènes est décrit chez un insecte. L'effet détrimental des infections sur la cognition et plus particulièrement sur les capacités d'apprentissage est bien documenté chez les vertébrés et les insectes sociaux. Alors que les mécanismes sous-jacents sont détaillés chez les vertébrés, des études expérimentales font défaut chez les insectes. Dans une seconde partie de ma thèse, j'ai mesuré les effets d'une infection orale par des pathogènes naturels sur les capacités d'apprentissage associatif de la drosophile. Contrairement aux études précédentes chez les insectes, j'ai trouvé que les mouches infectées par le pathogène virulent P. entomophila apprennent mieux à associer une odeur avec des chocs mécaniques que des mouches non infectées. Cet effet semble spécifique à l'infection orale, et jusqu'à présent je n'ai pas pu conclure sur les contributions respectives de la virulence du pathogène et de l'activité immunitaire des mouches dans cet effet. De façon intéressante, les mouches infectées pourraient montrer une plus grande réactivité à la douleur physique. Si l'amélioration de l'apprentissage observée chez les mouches infectées était due en partie à l'activité du système immunitaire, mes résultats suggéreraient l'existence de connections physiologiques entre le système immunitaire et le système nerveux. Les mécanismes de ces connections seraient à explorer. L'apprentissage et l'immunité sont liés sur un plan physiologique chez les insectes sociaux. Les liens physiologiques entre les caractères résultent souvent de l'expression de liens entre ces caractères au niveau génétique. Cependant, chez les insectes sociaux, il n'y a pas de preuve que l'apprentissage et l'immunité soient liés par un compromis évolutif. J'ai précédemment rapporté un effet positif de l'infection sur l'apprentissage chez la drosophile. Cela pourrait suggérer qu'une relation génétique positive existerait entre l'apprentissage et l'immunité. Nous avons testé cette hypothèse par deux approches : le croisement diallèle avec des lignées consanguines, et les lignées isofemelles. Les deux approches ont fournies des résultats similaires : nous n'avons pas détecté de corrélation génétique additive entre l'apprentissage et la résistance à l'infection avec le croisement diallèle, et pas de corrélation génétique chez des mouches non adaptées aux conditions de laboratoire avec les lignées isofemelles. En ligne avec la littérature, ces deux études suggèrent que l'effet positif de l'infection sur l'apprentissage que j'ai précédemment observé ne refléterait pas un lien évolutif positif entre l'apprentissage et l'immunité. Néanmoins, l'existence de relations génétiques complexes n'est pas exclue.