140 resultados para circadian and ultradian rhythms
Resumo:
Nocturnin is a circadian clock-regulated deadenylase thought to control mRNA expression post-transcriptionally through poly(A) tail removal. The expression of Nocturnin is robustly rhythmic in liver at both the mRNA and protein levels, and mice lacking Nocturnin are resistant to diet-induced obesity and hepatic steatosis. Here we report that Nocturnin expression is regulated by microRNA-122 (miR-122), a liver specific miRNA. We found that the 3'-untranslated region (3'-UTR) of Nocturnin mRNA harbors one putative recognition site for miR-122, and this site is conserved among mammals. Using a luciferase reporter construct with wild-type or mutant Nocturnin 3'-UTR sequence, we demonstrated that overexpression of miR-122 can down-regulate luciferase activity levels and that this effect is dependent on the presence of the putative miR-122 recognition site. Additionally, the use of an antisense oligonucleotide to knock down miR-122 in vivo resulted in significant up-regulation of both Nocturnin mRNA and protein expression in mouse liver during the night, resulting in Nocturnin rhythms with increased amplitude. Together, these data demonstrate that the normal rhythmic profile of Nocturnin expression in liver is shaped in part by miR-122. Previous studies have implicated Nocturnin and miR-122 as important post-transcriptional regulators of both lipid metabolism and circadian clock controlled gene expression in the liver. Therefore, the demonstration that miR-122 plays a role in regulating Nocturnin expression suggests that this may be an important intersection between hepatic metabolic and circadian control.
Resumo:
The circadian clock drives the rhythmic expression of a broad array of genes that orchestrate metabolism, sleep wake behavior, and the immune response. Clock genes are transcriptional regulators engaged in the generation of circadian rhythms. The cold inducible RNA-binding protein (CIRBP) guarantees high amplitude expression of clock. The cytokines TNF and TGFβ impair the expression of clock genes, namely the period genes and the proline- and acidic amino acid-rich basic leucine zipper (PAR-bZip) clock-controlled genes. Here, we show that TNF and TGFβ impair the expression of Cirbp in fibroblasts and neuronal cells. IL-1β, IL-6, IFNα, and IFNγ do not exert such effects. Depletion of Cirbp is found to increase the susceptibility of cells to the TNF-mediated inhibition of high amplitude expression of clock genes and modulates the TNF-induced cytokine response. Our findings reveal a new mechanism of cytokine-regulated expression of clock genes.
Resumo:
The authors examine the relation between the perinatal mortality rate (PMR), birth weight in four categories, and hour of birth throughout the week in Switzerland, using data on 672,013 births and 5,764 perinatal deaths recorded between 1979 and 1987. From Monday to Friday, the PMR follows a circadian rhythm with a regular increase from early morning to evening, with a peak for babies born between 7 and 8 p.m. This pattern of variation has two main components: The circadian rhythms for the proportion of births in the four weight categories and the PMR circadian rhythm for babies weighing more than 2.5 kg. According to a cosinor model, which describes about 40% of the total variation in the PMR, the most important determinants are changes in the proportions of births: Low birth weight increases toward the afternoon and night. Mechanisms underlying the weight-specific timing of birth are discussed, including time selection of birth according to obstetric risks, the direct effect of neonatal and obstetric care, and chronobiologic behavior.
Resumo:
Objectives: To test if the time of day significantly influences the occurrence of type 4A myocardial infarction in elective patients undergoing percutaneous coronary intervention (PCI). Background: Recent studies have suggested an influence of circadian rhythms on myocardial infarction size and mortality among patients with ST-elevation myocardial infarction. The aim of the study is to investigate whether periprocedural myocardial infarction (PMI) is influenced by the time of day in elective patients undergoing PCI. Methods: All consecutive patients undergoing elective PCI between 2007 and 2011 at our institutions with known post-interventional troponin were retrospectively included. Patients (n = 1021) were divided into two groups according to the starting time of the PCI: the morning group (n = 651) between 07:00 and 11:59, and the afternoon group (n = 370) between 12:00 and 18:59. Baseline and procedural characteristics as well as clinical outcome defined as the occurrence of PMI were compared between groups. In order to limit selection bias, all analyses were equally performed in 308 pairs using propensity score (PS) matching. Results: In the overall population, the rate of PMI was statistically lower in the morning group compared to the afternoon group (20% vs. 30%, p < 0.001). This difference remained statistically significant after PS-matching (21% vs. 29%, p = 0.03). Multivariate analysis shows that being treated in the afternoon independently increases the risk for PMI with an odds ratio of 2.0 (95%CI: 1.1-3.4; p = 0.02). Conclusions: This observational PS-matched study suggests that the timing of an elective PCI influences the rate of PMI.
Resumo:
A widely dispersed network of hypothalamic GnRH neurons controls the reproductive axis in mammals. Genetic investigation of the human disease model of isolated GnRH deficiency has revealed several key genes crucial for GnRH neuronal ontogeny and GnRH secretion. Among these genes, prokineticin 2 (PROK2), and PROK2 receptor (PROKR2) have recently emerged as critical regulators of reproduction in both mice and humans. Both prok2- and prokr2-deficient mice recapitulate the human Kallmann syndrome phenotype. Additionally, PROK2 and PROKR2 mutations are seen in humans with Kallmann syndrome, thus implicating this pathway in GnRH neuronal migration. However, PROK2/PROKR2 mutations are also seen in normosmic GnRH deficiency, suggesting a role for the prokineticin signaling system in GnRH biology that is beyond neuronal migration. This observation is particularly surprising because mature GnRH neurons do not express PROKR2. Moreover, mutations in both PROK2 and PROKR2 are predominantly detected in the heterozygous state with incomplete penetrance or variable expressivity frequently seen within and across pedigrees. In some of these pedigrees, a "second hit" or oligogenicity has been documented. Besides reproduction, a pleiotropic physiological role for PROK2 is now recognized, including regulation of pain perception, circadian rhythms, hematopoiesis, and immune response. Therefore, further detailed clinical studies of patients with PROK2/PROKR2 mutations will help to map the broader biological role of the PROK2/PROKR2 pathway and identify other interacting genes/proteins that mediate its molecular effects in humans.
Resumo:
The circadian timing system is critically involved in the maintenance of fluid and electrolyte balance and BP control. However, the role of peripheral circadian clocks in these homeostatic mechanisms remains unknown. We addressed this question in a mouse model carrying a conditional allele of the circadian clock gene Bmal1 and expressing Cre recombinase under the endogenous Renin promoter (Bmal1(lox/lox)/Ren1(d)Cre mice). Analysis of Bmal1(lox/lox)/Ren1(d)Cre mice showed that the floxed Bmal1 allele was excised in the kidney. In the kidney, BMAL1 protein expression was absent in the renin-secreting granular cells of the juxtaglomerular apparatus and the collecting duct. A partial reduction of BMAL1 expression was observed in the medullary thick ascending limb. Functional analyses showed that Bmal1(lox/lox)/Ren1(d)Cre mice exhibited multiple abnormalities, including increased urine volume, changes in the circadian rhythm of urinary sodium excretion, increased GFR, and significantly reduced plasma aldosterone levels. These changes were accompanied by a reduction in BP. These results show that local renal circadian clocks control body fluid and BP homeostasis.
Resumo:
BACKGROUND: Several parameters of cardiovascular physiology and pathophysiology exhibit circadian rhythms. Recently, a relation between infarct size and the time of day at which it occurs has been suggested in experimental models of myocardial infarction. The aim of this study is to investigate whether circadian rhythms could cause differences in ischemic burden in patients with ST-elevation myocardial infarction (STEMI) undergoing primary percutaneous coronary intervention (PPCI).¦METHODS: In 353 consecutive patients with STEMI treated by PPCI, time of symptom onset, peak creatine kinase (CK), and follow-up at 30 days were obtained. We divided 24 hours into 4 time groups based on time of symptom onset (00:00-05:59, 06:00-11:59, 12:00-17:59, and 18:00-23:59).¦RESULTS: There was no difference between the groups regarding baseline patients and management's characteristics. At multivariable analysis, there was a statistically significant difference between peak CK levels among patients with symptom onset between 00:00 and 05:59 when compared with peak CK levels of patients with symptom onset in any other time group (mean increase 38.4%, P < .05). Thirty-day mortality for STEMI patients with symptom onset occurring between 00:00 and 05:59 was significantly higher than any other time group (P < .05).¦CONCLUSION: This study demonstrates an independent correlation between the infarct size of STEMI patients treated by PPCI and the time of the day at which symptoms occurred. These results suggest that time of the day should be a critical issue to look at when assessing prognosis of patients with myocardial infarction.
Resumo:
Biological rhythms play a fundamental role in the physiology and behavior of most living organisms. Rhythmic circadian expression of clock-controlled genes is orchestrated by a molecular clock that relies on interconnected negative feedback loops of transcription regulators. Here we show that the circadian clock exerts its function also through the regulation of mRNA translation. Namely, the circadian clock influences the temporal translation of a subset of mRNAs involved in ribosome biogenesis by controlling the transcription of translation initiation factors as well as the clock-dependent rhythmic activation of signaling pathways involved in their regulation. Moreover, the circadian oscillator directly regulates the transcription of ribosomal protein mRNAs and ribosomal RNAs. Thus the circadian clock exerts a major role in coordinating transcription and translation steps underlying ribosome biogenesis.
Resumo:
A considerable proportion of mammalian gene expression undergoes circadian oscillations. Post-transcriptional mechanisms likely make important contributions to mRNA abundance rhythms. We have investigated how microRNAs (miRNAs) contribute to core clock and clock-controlled gene expression using mice in which miRNA biogenesis can be inactivated in the liver. While the hepatic core clock was surprisingly resilient to miRNA loss, whole transcriptome sequencing uncovered widespread effects on clock output gene expression. Cyclic transcription paired with miRNA-mediated regulation was thus identified as a frequent phenomenon that affected up to 30% of the rhythmic transcriptome and served to post-transcriptionally adjust the phases and amplitudes of rhythmic mRNA accumulation. However, only few mRNA rhythms were actually generated by miRNAs. Overall, our study suggests that miRNAs function to adapt clock-driven gene expression to tissue-specific requirements. Finally, we pinpoint several miRNAs predicted to act as modulators of rhythmic transcripts, and identify rhythmic pathways particularly prone to miRNA regulation.DOI: http://dx.doi.org/10.7554/eLife.02510.001.
Resumo:
Human skin copes with harmful environmental factors that are circadian in nature, yet how circadian rhythms modulate the function of human epidermal stem cells is mostly unknown. Here we show that in human epidermal stem cells and their differentiated counterparts, core clock genes peak in a successive and phased manner, establishing distinct temporal intervals during the 24 hr day period. Each of these successive clock waves is associated with a peak in the expression of subsets of transcripts that temporally segregate the predisposition of epidermal stem cells to respond to cues that regulate their proliferation or differentiation, such as TGFβ and calcium. Accordingly, circadian arrhythmia profoundly affects stem cell function in culture and in vivo. We hypothesize that this intricate mechanism ensures homeostasis by providing epidermal stem cells with environmentally relevant temporal functional cues during the course of the day and that its perturbation may contribute to aging and carcinogenesis.
Resumo:
The PAR-domain basic leucine zipper (PAR bZip) transcription factors DBP, TEF, and HLF accumulate in a highly circadian manner in several peripheral tissues, including liver and kidney. Mice devoid of all three of these proteins are born at expected Mendelian ratios, but are epilepsy prone, age at an accelerated rate, and die prematurely. In the hope of identifying PAR bZip target genes whose altered expression might contribute to the high morbidity and mortality of PAR bZip triple knockout mice, we compared the liver and kidney transcriptomes of these animals to those of wild-type or heterozygous mutant mice. These experiments revealed that PAR bZip proteins control the expression of many enzymes and regulators involved in detoxification and drug metabolism, such as cytochrome P450 enzymes, carboxylesterases, and constitutive androstane receptor (CAR). Indeed, PAR bZip triple knockout mice are hypersensitive to xenobiotic compounds, and the deficiency in detoxification may contribute to their early aging.
Resumo:
Ant colonies are known for their complex and efficient social organization that com-pletely lacks hierarchical structure. However, due to methodological difficulties in follow¬ing all ants of a colony, it was until now impossible to investigate the social and temporal organization of colonies. We developed a tracking system that allows tracking the posi¬tions and orientations of several hundred individually labeled ants continuously, providing for the first time quantitative long term data on all individuals of a colony. These data permit reconstructing trajectories, activity patterns and social networks of all ants in a colony and enable us to investigate ant behavior quantitatively in previously unpreceded ways. By analyzing the spatial positions and social interactions of all ants in six colonies for 41 days we show that ant colonies are organized in groups of nurses, nest patrollers and foragers. Workers of each group were highly interconnected and occupied similar spa¬tial locations in the nest. Groups strongly segregated spatially, and were characterized by unique behavioral signatures. Nurses spent most of their time on the brood. Nest patrollers frequently visited the rubbish pile, and foragers frequently visited the forag¬ing arena. In addition nurses were on average younger than nest patrollers who were, in turn, younger than foragers. We further show that workers had a preferred behav¬ioral trajectory and moved from nursing to nest patrolling, and from nest patrolling to foraging. By analyzing the activity patterns of all ants we show that only a third of all workers in a colony exhibit circadian rhythms and that these rhythms shortened by on av¬erage 42 minutes in constant darkness, thereby demonstrating the presence of a functional endogenous clock. Most rhythmic workers were foragers suggesting that rhythmicity is tightly associated with task. Nurses and nest patrollers were arrhythmic which most likely reflects plasticity of the circadian clock, as isolated workers in many species exhibit circadian rhythmicity. Altogether our results emphasize that ant colonies, despite their chaotic appearance, repose on a strong underlying social and temporal organization. - Les colonies de fourmis sont connues pour leur organisation sociale complexe et effi-cace, charactérisée par un manque absolu de structure hiérarchique. Cependant, puisqu'il est techniquement très difficile de suivre toutes les fourmis d'une colonie, il a été jusqu'à maintenant impossible d'étudier l'organisation sociale et temporelle des colonies de four-mis. Nous avons développé un système qui permet d'extraire en temps réel à partir d'images vidéo les positions et orientations de plusieurs centaines de fourmis marquées individuellement. Nous avons pu ainsi générer pour la première fois des données quanti-tatives et longitudinales relatives à des fourmis appartenant à une colonie. Ces données nous ont permis de reconstruire la trajectoire et l'activité de chaque fourmi ainsi que ses réseaux sociaux. Ceci nous a permis d'étudier de manière exhaustive et objective le com-portement de tous les individus d'une colonie. En analysant les données spatiales et les interactions sociales de toutes les fourmis de six colonies qui ont été filmées pendant 41 jours, nous montrons que les fourmis d'une même colonie se répartissent en trois groupes: nourrices, patrouilleuses et approvisionneuses. Les fourmis d'un même groupe interagis-sent fréquemment et occupent le même espace à l'intérieur du nid. L'espace propre à un groupe se recoupe très peu avec celui des autres. Chaque groupe est caractérisé par un comportement typique. Les nourrices s'affairent surtout autour du couvain. Les pa-trouilleuses font de fréquents déplacements vers le tas d'ordures, et les approvisionneuses sortent souvent du nid. Les nourrices sont en moyenne plus jeunes que les patrouilleuses qui, à leur tour, sont plus jeunes que les approvisionneuses. De plus, nous montrons que les ouvrières changent de tâche au cours de leur vie, passant de nourrice à patrouilleuse puis à approvisionneuse. En analysant l'activité de chaque fourmi, nous montrons que seulement un tiers des ouvrières d'une colonie présente des rythmes circadiens et que ces rythmes diminuent en moyenne de 42 minutes lorsqu'il y a obscurité constante, ce qui démontre ainsi la présence d'une horloge endogène. De plus, la plupart des approvi¬sionneuses ont une activité rythmique alors que les nourrices et patrouilleuses présentent une activité arythmique, ce qui suggère que la rythmicité est étroitement associée à la tâche. L'arythmie des nourrices et patrouilleuses repose probablement sur une plasticité de l'horloge endogène car des ouvrières de nombreuses espèces font preuve d'une ryth¬micité circadienne lorsqu'elles sont isolées de la colonie. Dans l'ensemble nos résultats révèlent qu'une colonie de fourmis se fonde sur une solide organisation sociale et tem¬porelle malgré son apparence chaotique.
Resumo:
Renal excretion of water and major electrolytes exhibits a significant circadian rhythm. This functional periodicity is believed to result, at least in part, from circadian changes in secretion/reabsorption capacities of the distal nephron and collecting ducts. Here, we studied the molecular mechanisms underlying circadian rhythms in the distal nephron segments, i.e., distal convoluted tubule (DCT) and connecting tubule (CNT) and the cortical collecting duct (CCD). Temporal expression analysis performed on microdissected mouse DCT/CNT or CCD revealed a marked circadian rhythmicity in the expression of a large number of genes crucially involved in various homeostatic functions of the kidney. This analysis also revealed that both DCT/CNT and CCD possess an intrinsic circadian timing system characterized by robust oscillations in the expression of circadian core clock genes (clock, bma11, npas2, per, cry, nr1d1) and clock-controlled Par bZip transcriptional factors dbp, hlf, and tef. The clock knockout mice or mice devoid of dbp/hlf/tef (triple knockout) exhibit significant changes in renal expression of several key regulators of water or sodium balance (vasopressin V2 receptor, aquaporin-2, aquaporin-4, alphaENaC). Functionally, the loss of clock leads to a complex phenotype characterized by partial diabetes insipidus, dysregulation of sodium excretion rhythms, and a significant decrease in blood pressure. Collectively, this study uncovers a major role of molecular clock in renal function.
Resumo:
The authors examine the relation between the perinatal mortality rate (PMR), birth weight in four categories, and hour of birth throughout the week in Switzerland, using data on 672,013 births and 5,764 perinatal deaths recorded between 1979 and 1987. From Monday to Friday, the PMR follows a circadian rhythm with a regular increase from early morning to evening, with a peak for babies born between 7 and 8 p.m. This pattern of variation has two main components: The circadian rhythms for the proportion of births in the four weight categories and the PMR circadian rhythm for babies weighing more than 2.5 kg. According to a cosinor model, which describes about 40% of the total variation in the PMR, the most important determinants are changes in the proportions of births: Low birth weight increases toward the afternoon and night. Mechanisms underlying the weight-specific timing of birth are discussed, including time selection of birth according to obstetric risks, the direct effect of neonatal and obstetric care, and chronobiologic behavior.
Fatigue and weight loss predict survival on circadian chemotherapy for metastatic colorectal cancer.
Resumo:
BACKGROUND: Chemotherapy-induced neutropenia has been associated with prolonged survival selectively in patients on a conventional schedule (combined 5-fluorouracil, leucovorin, and oxaliplatin [FOLFOX2]) but not on a chronomodulated schedule of the same drugs administered at specific circadian times (chronoFLO4). The authors hypothesized that the early occurrence of chemotherapy-induced symptoms correlated with circadian disruption would selectively hinder the efficacy of chronotherapy. METHODS: Fatigue and weight loss (FWL) were considered to be associated with circadian disruption based on previous data. Patients with metastatic colorectal cancer (nâeuro0/00=âeuro0/00543) from an international phase 3 trial comparing FOLFOX2 with chronoFLO4 were categorized into 4 subgroups according to the occurrence of FWL or other clinically relevant toxicities during the initial 2 courses of chemotherapy. Multivariate Cox models were used to assess the role of toxicity on the time to progression (TTP) and overall survival (OS). RESULTS: The proportions of patients in the 4 subgroups were comparable in both treatment arms (Pâeuro0/00=âeuro0/00.77). No toxicity was associated with TTP or OS on FOLFOX2. The median OS on FOLFOX2 ranged from 16.4 (95% confidence limits [CL], 7.2-25.6 months) to 19.8 months (95% CL, 17.7-22.0 months) according to toxicity subgroup (Pâeuro0/00=âeuro0/00.45). Conversely, FWL, but no other toxicity, independently predicted for significantly shorter TTP (Pâeuro0/00<âeuro0/00.0001) and OS (Pâeuro0/00=âeuro0/00.001) on chronoFLO4. The median OS on chronoFLO4 was 13.8 months (95% CL, 10.4-17.2 months) or 21.1 months (95% CL, 19.0-23.1 months) according to presence or absence of chemotherapy-induced FWL, respectively. CONCLUSIONS: Early onset chemotherapy-induced FWL was an independent predictor of poor TTP and OS only on chronotherapy. Dynamic monitoring to detect early chemotherapy-induced circadian disruption could allow the optimization of rapid chronotherapy and concomitant improvements in safety and efficacy.