54 resultados para chromate salt
Resumo:
Among the various strategies to reduce the incidence of non-communicable diseases reduction of sodium intake in the general population has been recognized as one of the most cost-effective means because of its potential impact on the development of hypertension and cardiovascular diseases. Yet, this strategic health recommendation of the WHO and many other international organizations is far from being universally accepted. Indeed, there are still several unresolved scientific and epidemiological questions that maintain an ongoing debate. Thus what is the adequate low level of sodium intake to recommend to the general population and whether national strategies should be oriented to the overall population or only to higher risk fractions of the population such as salt-sensitive patients are still discussed. In this paper, we shall review the recent results of the literature regarding salt, blood pressure and cardiovascular risk and we present the recommendations recently proposed by a group of experts of Switzerland. The propositions of the participating medical societies are to encourage national health authorities to continue their discussion with the food industry in order to reduce the sodium intake of food products with a target of mean salt intake of 5-6 grams per day in the population. Moreover, all initiatives to increase the information on the effect of salt on health and on the salt content of food are supported.
Resumo:
Pharmacogenomics is a field with origins in the study of monogenic variations in drug metabolism in the 1950s. Perhaps because of these historical underpinnings, there has been an intensive investigation of 'hepatic pharmacogenes' such as CYP450s and liver drug metabolism using pharmacogenomics approaches over the past five decades. Surprisingly, kidney pathophysiology, attendant diseases and treatment outcomes have been vastly under-studied and under-theorized despite their central importance in maintenance of health, susceptibility to disease and rational personalized therapeutics. Indeed, chronic kidney disease (CKD) represents an increasing public health burden worldwide, both in developed and developing countries. Patients with CKD suffer from high cardiovascular morbidity and mortality, which is mainly attributable to cardiovascular events before reaching end-stage renal disease. In this paper, we focus our analyses on renal function before end-stage renal disease, as seen through the lens of pharmacogenomics and human genomic variation. We herein synthesize the recent evidence linking selected Very Important Pharmacogenes (VIP) to renal function, blood pressure and salt-sensitivity in humans, and ways in which these insights might inform rational personalized therapeutics. Notably, we highlight and present the rationale for three applications that we consider as important and actionable therapeutic and preventive focus areas in renal pharmacogenomics: 1) ACE inhibitors, as a confirmed application, 2) VDR agonists, as a promising application, and 3) moderate dietary salt intake, as a suggested novel application. Additionally, we emphasize the putative contributions of gene-environment interactions, discuss the implications of these findings to treat and prevent hypertension and CKD. Finally, we conclude with a strategic agenda and vision required to accelerate advances in this under-studied field of renal pharmacogenomics with vast significance for global public health.
Resumo:
To assess the variability of the response to exogenous atrial natriuretic peptide (ANP), it was infused at the rate of 1 microgram/min for 2 h in 6 salt-loaded normal volunteers under controlled conditions on 2 occasions at an interval of 1 week. The effect on solute excretion and the haemodynamic and endocrine actions were highly reproducible. The constant ANP infusion caused a delayed and prolonged excretion of sodium, chloride and calcium, no change in potassium or phosphate excretion or in glomerular filtration rate but a marked decrease in renal plasma flow. Blood pressure, heart rate and the plasma levels of angiotensin II, aldosterone, arginine vasopressin and plasma renin activity were unaltered. The effect of a 2-h infusion of ANP 0.5 microgram/min or its vehicle on apparent hepatic blood flow (HBF) was also studied in 14 normal volunteers by measuring the indocyanine green clearance. A 21% decrease in HBF was observed in subjects who received the ANP infusion (p less than 0.01 vs vehicle). Thus, ANP infused at a dose that did not lower blood pressure decreased both renal and liver blood flow in normotensive volunteers. The renal and endocrine responses to ANP were reproducible over a 1-week interval.
Resumo:
BACKGROUND: Type 1 pseudohypoaldosteronism (PHA1) is a salt-wasting syndrome caused by mineralocorticoid resistance. Autosomal recessive and dominant hereditary forms are caused by Epithelial Na Channel and Mineralocorticoid Receptor mutation respectively, while secondary PHA1 is usually associated with urological problems. METHODS: Ten patients were studied in four French pediatric units in order to characterize PHA1 spectrum in infants. Patients were selected by chart review. Genetic, clinical and biochemistry data were collected and analyzed. RESULTS: Autosomal recessive PHA1 (n = 3) was diagnosed at 6 and 7 days of life in three patients presenting with severe hyperkalaemia and weight loss. After 8 months, 3 and 5 years on follow-up, neurological development and longitudinal growth was normal with high sodium supplementation. Autosomal dominant PHA1 (n = 4) was revealed at 15, 19, 22 and 30 days of life because of failure to thrive. At 8 months, 3 and 21 years of age, longitudinal growth was normal in three patients who were given salt supplementation; no significant catch-up growth was obtained in the last patient at 20 months of age. Secondary PHA1 (n = 3) was diagnosed at 11, 26 days and 5 months of life concomitantly with acute pyelonephritis in three children with either renal hypoplasia, urinary duplication or bilateral megaureter. The outcome was favourable and salt supplementation was discontinued after 3, 11 and 13 months. CONCLUSIONS: PHA1 should be suspected in case of severe hyperkalemia and weight loss in infants and need careful management. Pathogenesis of secondary PHA1 is still challenging and further studies are mandatory to highlight the link between infection, developing urinary tract and pseudohypoaldosteronism.
Resumo:
A cryo-electron microscopy study of supercoiled DNA molecules freely suspended in cryo-vitrified buffer was combined with Monte Carlo simulations and gel electrophoretic analysis to investigate the role of intersegmental electrostatic repulsion in determining the shape of supercoiled DNA molecules. It is demonstrated here that a decrease of DNA-DNA repulsion by increasing concentrations of counterions causes a higher fraction of the linking number deficit to be partitioned into writhe. When counterions reach concentrations likely to be present under in vivo conditions, naturally supercoiled plasmids adopt a tightly interwound conformation. In these tightly supercoiled DNA molecules the opposing segments of interwound superhelix seem to directly contact each other. This form of supercoiling, where two DNA helices interact laterally, may represent an important functional state of DNA. In the particular case of supercoiled minicircles (178 bp) the delta Lk = -2 topoisomers undergo a sharp structural transition from almost planar circles in low salt buffers to strongly writhed "figure-eight" conformations in buffers containing neutralizing concentrations of counterions. Possible implications of this observed structural transition in DNA are discussed.
Resumo:
The endodermis acts as a "second skin" in plant roots by providing the cellular control necessary for the selective entry of water and solutes into the vascular system. To enable such control, Casparian strips span the cell wall of adjacent endodermal cells to form a tight junction that blocks extracellular diffusion across the endodermis. This junction is composed of lignin that is polymerized by oxidative coupling of monolignols through the action of a NADPH oxidase and peroxidases. Casparian strip domain proteins (CASPs) correctly position this biosynthetic machinery by forming a protein scaffold in the plasma membrane at the site where the Casparian strip forms. Here, we show that the dirigent-domain containing protein, enhanced suberin1 (ESB1), is part of this machinery, playing an essential role in the correct formation of Casparian strips. ESB1 is localized to Casparian strips in a CASP-dependent manner, and in the absence of ESB1, disordered and defective Casparian strips are formed. In addition, loss of ESB1 disrupts the localization of the CASP1 protein at the casparian strip domain, suggesting a reciprocal requirement for both ESB1 and CASPs in forming the casparian strip domain.
Resumo:
Computer simulations on a new model of the alpha1b-adrenergic receptor based on the crystal structure of rhodopsin have been combined with experimental mutagenesis to investigate the role of residues in the cytosolic half of helix 6 in receptor activation. Our results support the hypothesis that a salt bridge between the highly conserved arginine (R143(3.50)) of the E/DRY motif of helix 3 and a conserved glutamate (E289(6.30)) on helix 6 constrains the alpha1b-AR in the inactive state. In fact, mutations of E289(6.30) that weakened the R143(3.50)-E289(6.30) interaction constitutively activated the receptor. The functional effect of mutating other amino acids on helix 6 (F286(6.27), A292(6.33), L296(6.37), V299(6.40,) V300(6.41), and F303(6.44)) correlates with the extent of their interaction with helix 3 and in particular with R143(3.50) of the E/DRY sequence.
Resumo:
BACKGROUND: Nitrosative stress takes place in endothelial cells (EC) during corneal acute graft rejection. The purpose of this study was to evaluate the potential role of peroxynitrite on corneal EC death. METHODS: The effect of peroxynitrite was evaluated in vivo. Fifty, 250, and 500 microM in 1.5 microL of the natural or denatured peroxynitrite in 50 microM NaOH, 50 microM NaOH alone, or balanced salt solution were injected into the anterior chamber of rat eyes (n=3/group). Corneal toxic signs after injection were assessed by slit-lamp, in vivo confocal imaging, pachymetry, and EC count. The effect of peroxynitrite was also evaluated on nitrotyrosine and leucocyte elastase inhibitor/LDNase II immunohistochemistry. Human corneas were incubated with peroxynitrite and the effect on EC viability was evaluated. A specific inducible nitric oxide synthase inhibitor (iNOS) was administered systemically in rats undergoing allogeneic corneal graft rejection and the effect on EC was evaluated by EC count. RESULTS: Rat eyes receiving as little as 50 microM peroxynitrite showed a specific dose-dependent toxicity on EC. We observed an intense nitrotyrosine staining of human and rat EC exposed to peroxynitrite associated with leucocyte elastase inhibitor nuclear translocation, a noncaspase dependent apoptosis reaction. Specific inhibition of iNOS generation prevented EC death and enhanced EC survival of the grafted corneas. However, inhibition of iNOS did not have a significant influence on the incidence of graft rejection. CONCLUSION: Nitrosative stress during acute corneal graft rejection in rat eyes induces a noncaspase dependent apoptotic death in EC. Inhibition of nitric oxide production during the corneal graft rejection has protective effects on the corneal EC survival.