98 resultados para cancer metabolism


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of cancer is a major problem in immunosuppressed patients, particularly after solid organ transplantation. We have recently shown that calcineurin inhibitors (CNI) used to treat transplant patients may play a critical role in the rapid progression of renal cancer. To examine the intracellular signaling events for CNI-mediated direct tumorigenic pathway(s), we studied the effect of CNI on the activation of proto-oncogenic Ras in human normal renal epithelial cells (REC) and renal cancer cells (786-0 and Caki-1). We found that CNI treatment significantly increased the level of activated GTP-bound form of Ras in these cells. In addition, CNI induced the association of Ras with one of its effector molecules, Raf, but not with Rho and phosphatidylinositol 3-kinase; CNI treatment also promoted the phosphorylation of the Raf kinase inhibitory protein and the downregulation of carabin, all of which may lead to the activation of the Ras-Raf pathway. Blockade of this pathway through either pharmacologic inhibitors or gene-specific small interfering RNA significantly inhibited CNI-mediated augmented proliferation of renal cancer cells. Finally, it was observed that CNI treatment increased the growth of human renal tumors in vivo, and the Ras-Raf pathway is significantly activated in the tumor tissues of CNI-treated mice. Together, targeting the Ras-Raf pathway may prevent the development/progression of renal cancer in CNI-treated patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The rate of energy expenditure was repeatedly measured by indirect calorimetry both in the basal state (BMR) and in the resting fed state (RMR) in 8 middle-aged male patients operated for oropharyngeal cancer. In the postsurgical phase, two sequential energy levels were administered by nasogastric tube: (1) a 'maintenance' level (days 3-5) at 1.4 X measured presurgery BMR; (2) a 'supramaintenance' level (days 6-9) at 1.7 X measured BMR on day 6. Before surgery the patients had a BMR averaging (23.7 +/- 1.0 kcal/kg.day). After surgery BMR increased to 27.6 +/- 2.7 kcal/kg.day (day 6), then it decreased to 24.4 +/- 1.4 kcal/kg.day (day 10). The difference between RMR and BMR yielded a nutrient-induced thermogenesis averaging 5 +/- 1 and 8.5 +/- 2% (p less than 0.05) on levels 1 and 2, respectively. It is concluded that an energy level corresponding to 1.4 X presurgery BMR is sufficient to maintain energy and substrate equilibrium in nondepleted patients, whereas 1.7 X BMR induces positive protein and fat balances concomitant to a decrease efficiency of energy utilization.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mutations of the TP53 and Ki-ras genes have been reported to be of prognostic importance in colorectal carcinomas. An increased intracellular concentration of the p53 protein, although not identical to, is sometimes seen in tumours with TP53 mutation and has been correlated with poor prognosis in some tumour types. Previous colorectal cancer studies, addressing the prognostic importance of Ki-ras mutation and TP53 aberrations, yielded contradictory results. The aim of this study was to determine in a clinically and therapeutically homogeneous group of 122 sporadic Dukes' B colorectal carcinomas with a median follow-up of 67 months (3-144 months) whether or not p53 protein expression, TP53 mutation and K-ras mutation correlated with prognosis. p53 staining was performed by immunohistochemistry, using the monoclonal antibody DO7 on paraffin-embedded tissue. Mutations in exons 5-8 of the TP53 gene and in codons 12 and 13 of the K-ras gene were assayed in paraffin-embedded tissue by the single-strand conformation polymorphism (SSCP) assay. Nuclear p53 staining was found in 57 (47%) tumours. Aberrant migration patterns indicating mutation of the TP53 gene were found in 39 (32%) tumours. Forty-six carcinomas (38%) showed a mutation of the Ki-ras codons 12 or 13. In a univariate analysis, patients with wild-type TP53 status showed a trend towards better survival, compared with those with mutated TP53 (log-rank test, P = 0.051). Likewise, tumours immunohistochemically positive for p53 showed a worse prognosis than p53-negative tumours (P = 0.010). The presence or absence of mutations in Ki-ras did not correlate with prognosis (P = 0.703). In multivariate analysis, only p53 immunoreactivity emerged as an independent marker for prognosis hazard ratio (HR) = 2.16, 95% confidence interval (CI) 1.12-4.11, P = 0.02). Assessment of p53 protein expression is more discriminative than TP53 mutation to predict the outcome of Dukes' stage B tumours and could be a useful tool to identify patients who might benefit from adjuvant therapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Calcineurin inhibitors such as cyclosporin A (CsA) are the mainstay of immunosuppressive treatment for organ transplant recipients. Squamous cell carcinoma (SCC) of the skin is a major complication of treatment with these drugs, with a 65 to 100-fold higher risk than in the normal population. By contrast, the incidence of basal cell carcinoma (BCC), the other major keratinocyte-derived tumour of the skin, of melanoma and of internal malignancies increases to a significantly lesser extent. Here we report that genetic and pharmacological suppression of calcineurin/nuclear factor of activated T cells (NFAT) function promotes tumour formation in mouse skin and in xenografts, in immune compromised mice, of H-ras(V12) (also known as Hras1)-expressing primary human keratinocytes or keratinocyte-derived SCC cells. Calcineurin/NFAT inhibition counteracts p53 (also known as TRP53)-dependent cancer cell senescence, thereby increasing tumorigenic potential. ATF3, a member of the 'enlarged' AP-1 family, is selectively induced by calcineurin/NFAT inhibition, both under experimental conditions and in clinically occurring tumours, and increased ATF3 expression accounts for suppression of p53-dependent senescence and enhanced tumorigenic potential. Thus, intact calcineurin/NFAT signalling is critically required for p53 and senescence-associated mechanisms that protect against skin squamous cancer development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Two related and significant issues may elicit perplexity in medicinal chemists and are discussed here. First, a broad presentation of the pharmacological and toxicological consequences of drug metabolism should justify the significance of drug metabolism and serve as an incentive to further study. When comparing the pharmacological activities of a drug and its metabolite(s), a continuum is found which ranges from soft drugs (no active metabolites) to prodrugs (inactive per se, as illustrated here with clopidogrel and prasugrel). Innumerable intermediate cases document drugs whose activity is shared by one or more metabolites, as exemplified with tamoxifen. The toxicological consequences of metabolism at the molecular, macromolecular, and macroscopic levels are manyfold. A brief overview is offered together with a summary of the reactions of toxification and detoxification of the antiepileptic valproic acid. The second issue discussed in the review is a comparison of the relative significance of cytochromes P450 and other oxidoreductases (EC 1), hydrolases (EC 3), and transferases (EC 2) in drug metabolism, based on a 'guesstimate' of the number of drug metabolites that are known to be produced by them. The conclusion is that oxidoreductases are the main enzymes responsible for the formation of toxic or active metabolites, whereas transferases play the major role in producing inactive and nontoxic metabolites.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

SummaryCancer stem cells (CSC) are poorly differentiated, slowly proliferating cells, with high tumorigenic potential. Some of these cells, as it has been shown in leukemia, evade chemo- and radiotherapy and recapitulate the tumor composed of CSC and their highly proliferative progeny. Therefore, understanding the molecular biology of those cells is crucial for improvement of currently used anti-cancer therapies.This work is composed of two CSC-related projects. The first deals with CD44, a frequently used marker of CSC; the second involves Imp2 and its role in CSC bioenergetics. PART 1. CD44 is a multifunctional transmembrane protein involved in migration, homing, adhesion, proliferation and survival. It is overexpressed in many cancers and its levels are correlated with poor prognosis. CD44 is also highly expressed by CSC and in many malignancies it is used for CSC isolation.In the present work full-lenght CD44 nuclear localization was studied, including the mechanism of nuclear translocation and its functional role in the nucleus. Full-length CD44 can be found in nuclei of various cell types, regardless of their tumorigenic potential. For nuclear localization, CD44 needs to be first inserted into the cell membrane, from which it is transported via the endocytic pathway. Upon binding to transportinl it is translocated to the nucleus. The nuclear localization signal recognized by transportinl has been determined as the first 20 amino acids of the membrane proximal intracellular domain. Nuclear export of CD44 is facilitated by exportin Crml. Investigation of the function of nuclear CD44 revealed its implication in de novo RNA synthesis.PART 2. Glioblastoma multiforme is the most aggressive and most frequent brain malignancy. It was one of the first solid tumors from which CSC have been isolated. Based on the similarity between GBM CSC and normal stem cells expression of an oncofetal mRNA binding protein Imp2 has been investigated.Imp2 is absent in normal brain as well as in low grade gliomas, but is expressed in over 75% GBM cases and its expression is higher in CSC compared to their more differentiated counterparts. Analysis of mRNA transcripts bound by Imp2 and its protein interactors revealed that in GBM CSC Imp2 may be implicated in mitochondrial metabolism. Indeed, shRNA mediated silencing of protein expression led to decreased mitochondrial activity, decreased oxygen consumption and decreased activity of respiratory chain protein complex I. Moreover, lack of Imp2 severely affected self-renewal and tumorigenicity of GBM CSC. Experimental evidence suggest that GBM CSC depend on mitochondrial oxidative phosphorylation as an energy producing pathway and that Imp2 is a novel regulator of this pathway.RésuméLes cellules cancéreuses souches sont des cellules peu différentiées, à proliferation lente et hautement tumorigénique. Ces cellules sont radio-chimio résistantes et sont capable reformer la tumeur dans sont intégralité, reproduisant l'hétérogénéité cellulaire présent dans la tumeur d'origine. Pour améliorer les therapies antitumorales actuelles il est crucial de comprendre les mécanismes moléculaires qui caractérisent cette sous-population de cellules hautement malignes.Ce travail de thèse se compose de deux projets s'articulant autour du même axe :Le CD44 est une protéine multifonctionnelle et transmembranaire très souvent utilisée comme marqueur de cellules souches tumorales dans différents cancers. Elle est impliquée dans la migration, l'adhésion, la prolifération et la survie des cellules. Lors de ce travail de recherche, nous nous sommes intéressés à la localisation cellulaire du CD44, ainsi qu'aux mécanismes permettant sa translocation nucléaire. En effet, bien que principalement décrit comme un récepteur de surface transmembranaire, le CD44 sous sa forme entière, non clivée en peptides, peut également être observé à l'intérieur du noyau de diverses cellules, quel que soit leur potentiel tumorigénique. Pour passer ainsi d'un compartiment cellulaire à un autre, le CD44 doit d'abord être inséré dans la membrane plasmique, d'où il est transporté par endocytose jusqu'à l'intérieur du cytoplasme. La transportai permet ensuite la translocation nucléaire du CD44 via une « séquence signal » contenue dans les 20 acides aminés du domaine cytoplasmique qui bordent la membrane. A l'inverse, le CD44 est exporté du noyau grâce à l'exportin Crml. En plus des mécanismes décrits ci-dessus, cette étude a également mis en évidence l'implication du CD44 dans la synthèse des ARN, d'où sa présence dans le noyau.Le glioblastome est la plus maligne et la plus fréquente des tumeurs cérébrales. Dans ce second projet de recherche, le rôle de IMP2 dans les cellules souches tumorales de glioblastomes a été étudié. La présence de cette protéine oncofoetale a d'abord été mise en évidence dans 75% des cas les plus agressifs des gliomes (grade IV, appelés glioblastomes), tandis qu'elle n'est pas exprimée dans les grades I à III de ces tumeurs, ni dans le cerveau sain. De plus, IMP2 est apparue comme étant davantage exprimée dans les cellules souches tumorales que dans les cellules déjà différenciées. La baisse de l'expression de IMP2 au moyen de shRNA a résulté en une diminution de l'activité mitochondriale, en une réduction de la consommation d'oxygène ainsi qu'en une baisse de l'activité du complexe respiratoire I.L'inhibition de IMP2 a également affecté la capacité de renouvellement de la population des cellules souches tumorales ainsi que leur aptitude à former des tumeurs.Lors de ce travail de thèse, une nouvelle fonction d'un marqueur de cellules souches tumorales a été mise en évidence, ainsi qu'un lien important entre la bioénergétique de ces cellules et l'expression d'une protéine oncofoetale.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

INTRODUCTION: Breast cancer subtyping and prognosis have been studied extensively by gene expression profiling, resulting in disparate signatures with little overlap in their constituent genes. Although a previous study demonstrated a prognostic concordance among gene expression signatures, it was limited to only one dataset and did not fully elucidate how the different genes were related to one another nor did it examine the contribution of well-known biological processes of breast cancer tumorigenesis to their prognostic performance. METHOD: To address the above issues and to further validate these initial findings, we performed the largest meta-analysis of publicly available breast cancer gene expression and clinical data, which are comprised of 2,833 breast tumors. Gene coexpression modules of three key biological processes in breast cancer (namely, proliferation, estrogen receptor [ER], and HER2 signaling) were used to dissect the role of constituent genes of nine prognostic signatures. RESULTS: Using a meta-analytical approach, we consolidated the signatures associated with ER signaling, ERBB2 amplification, and proliferation. Previously published expression-based nomenclature of breast cancer 'intrinsic' subtypes can be mapped to the three modules, namely, the ER-/HER2- (basal-like), the HER2+ (HER2-like), and the low- and high-proliferation ER+/HER2- subtypes (luminal A and B). We showed that all nine prognostic signatures exhibited a similar prognostic performance in the entire dataset. Their prognostic abilities are due mostly to the detection of proliferation activity. Although ER- status (basal-like) and ERBB2+ expression status correspond to bad outcome, they seem to act through elevated expression of proliferation genes and thus contain only indirect information about prognosis. Clinical variables measuring the extent of tumor progression, such as tumor size and nodal status, still add independent prognostic information to proliferation genes. CONCLUSION: This meta-analysis unifies various results of previous gene expression studies in breast cancer. It reveals connections between traditional prognostic factors, expression-based subtyping, and prognostic signatures, highlighting the important role of proliferation in breast cancer prognosis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Human tumors often contain slowly proliferating cancer cells that resist treatment, but we do not know precisely how these cells arise. We show that rapidly proliferating cancer cells can divide asymmetrically to produce slowly proliferating "G0-like" progeny that are enriched following chemotherapy in breast cancer patients. Asymmetric cancer cell division results from asymmetric suppression of AKT/PKB kinase signaling in one daughter cell during telophase of mitosis. Moreover, inhibition of AKT signaling with small-molecule drugs can induce asymmetric cancer cell division and the production of slow proliferators. Cancer cells therefore appear to continuously flux between symmetric and asymmetric division depending on the precise state of their AKT signaling network. This model may have significant implications for understanding how tumors grow, evade treatment, and recur.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

PURPOSE: As no curative treatment for advanced pancreatic and biliary cancer with malignant ascites exists, new modalities possibly improving the response to available chemotherapies must be explored. This phase I study assesses the feasibility, tolerability and pharmacokinetics of a regional treatment of gemcitabine administered in escalating doses by the stop-flow approach to patients with advanced abdominal malignancies (adenocarcinoma of the pancreas, n = 8, and cholangiocarcinoma of the liver, n = 1). EXPERIMENTAL DESIGN: Gemcitabine at 500, 750 and 1,125 mg/m(2) was administered to three patients at each dose level by loco-regional chemotherapy, using hypoxic abdominal stop-flow perfusion. This was achieved by an aorto-caval occlusion by balloon catheters connected to an extracorporeal circuit. Gemcitabine and its main metabolite 2',2'-difluorodeoxyuridine (dFdU) concentrations were measured by high performance liquid chromatography with UV detection in the extracorporeal circuit during the 20 min of stop-flow perfusion, and in peripheral plasma for 420 min. Blood gases were monitored during the stop-flow perfusion and hypoxia was considered stringent if two of the following endpoints were met: pH </= 7.2, pO(2) nadir ratio </=0.70 or pCO(2) peak ratio >/=1.35. The tolerability of this procedure was also assessed. RESULTS: Stringent hypoxia was achieved in four patients. Very high levels of gemcitabine were rapidly reached in the extracorporeal circuit during the 20 min of stop-flow perfusion, with C (max) levels in the abdominal circuit of 246 (+/-37%), 2,039 (+/-77%) and 4,780 (+/-7.3%) mug/ml for the three dose levels 500, 750 and 1,125 mg/m(2), respectively. These C (max) were between 13 (+/-51%) and 290 (+/-12%) times higher than those measured in the peripheral plasma. Similarly, the abdominal exposure to gemcitabine, calculated as AUC(t0-20), was between 5.5 (+/-43%) and 200 (+/-66%)-fold higher than the systemic exposure. Loco-regional exposure to gemcitabine was statistically higher in presence of stringent hypoxia (P < 0.01 for C (max) and AUC(t0-20), both normalised to the gemcitabine dose). Toxicities were acceptable considering the complexity of the procedure and were mostly hepatic; it was not possible to differentiate the respective contributions of systemic and regional exposures. A significant correlation (P < 0.05) was found between systemic C (max) of gemcitabine and the nadir of both leucocytes and neutrophils. CONCLUSIONS: Regional exposure to gemcitabine-the current standard drug for advanced adenocarcinoma of the pancreas-can be markedly enhanced using an optimised hypoxic stop-flow perfusion technique, with acceptable toxicities up to a dose of 1,125 mg/m(2). However, the activity of gemcitabine under hypoxic conditions is not as firmly established as that of other drugs such as mitomycin C, melphalan or tirapazamine. Further studies of this investigational modality, but with bioreductive drugs, are therefore warranted first to evaluate the tolerance in a phase I study and later on to assess whether it does improve the response to chemotherapy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

EGFR receptor is expressed on most of the non small cell lung carcinoma (NSCLC) cells. Its relative importance in oncogenesis and tumour progression seems to greatly vary among NSCLC. Two molecules targeting differently EGFR are currently used for the treatment of metastatic NSCLC. cetuximab, a monoclonal antibody directed against the extracellular domain of the receptor, leads to a moderate survival benefit when associated with standard first-line chemotherapy. Erlotinib, a small EGFR tyrosine-kinase inhibitor molecule is used in 2nd or 3rd treatment line. Predictive factors for efficiency of these new treatments are subjects of intense research, in order to allow a better selection of the patients who could benefit from such a strategy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

IMPORTANCE OF THE FIELD: With some 220,000 new cases/year in the world, pancreatic adenocarcinoma is the fourth highest cause of death by cancers. Among newly diagnosed patients about 210,000 will die within 9 months following diagnosis. Therefore, effective adjuncts to current treatment strategies are necessary. Because embryological signaling pathways are upregulated in pancreatic adenocarcinoma, they represent potential targets for future therapies. AREAS COVERED IN THIS REVIEW: Our aim is to present the Notch pathway, and to describe its involvement in pancreatic pathophysiology/carcinogenesis. This pathway appeared as a prime target for pancreatic cancer therapy. In the light of the crosstalk of Notch with other survival/embryologic pathways, drugs affecting more than one pathway may have to be combined. WHAT THE READER WILL GAIN: Drugs against gamma-secretases could thus serve in cancer treatment and can be combined with drugs targeting survival pathways interplaying with Notch such as Hedgehog. TAKE HOME MESSAGE: Downregulation of Notch contributes to the inhibition and apoptosis of pancreatic cancer cells whereas Hedgehog inhibition will allow for enhanced delivery of drugs to the tumor. Both pathway inhibitors appear to have synergistic effects for future therapeutics for pancreatic adenocarcinoma, once safety issues of compounds are overcome.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tumour cells proliferate much faster than normal cells; nearly all anticancer treatments are toxic to both cell types, limiting their efficacy. The altered metabolism resulting from cellular transformation and cancer progression supports cellular proliferation and survival, but leaves cancer cells dependent on a continuous supply of energy and nutrients. Hence, many metabolic enzymes have become targets for new cancer therapies. In addition to its well-described roles in cell-cycle progression and cancer, the cyclin/CDK-pRB-E2F1 pathway contributes to lipid synthesis, glucose production, insulin secretion, and glycolytic metabolism, with strong effects on overall metabolism. Notably, these cell-cycle regulators trigger the adaptive "metabolic switch" that underlies proliferation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Emerging evidence indicates that angiogenesis and immunosuppression frequently occur simultaneously in response to diverse stimuli. Here, we describe a fundamental biological programme that involves the activation of both angiogenesis and immunosuppressive responses, often through the same cell types or soluble factors. We suggest that the initiation of these responses is part of a physiological and homeostatic tissue repair programme, which can be co-opted in pathological states, notably by tumours. This view can help to devise new cancer therapies and may have implications for aseptic tissue injury, pathogen-mediated tissue destruction, chronic inflammation and even reproduction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Metastatic growth in distant organs is the major cause of cancer mortality. The development of metastasis is a multistage process with several rate-limiting steps. Although dissemination of tumour cells seems to be an early and frequent event, the successful initiation of metastatic growth, a process termed 'metastatic colonization', is inefficient for many cancer types and is accomplished only by a minority of cancer cells that reach distant sites. Prevalent target sites are characteristic of many tumour entities, suggesting that inadequate support by distant tissues contributes to the inefficiency of the metastatic process. Here we show that a small population of cancer stem cells is critical for metastatic colonization, that is, the initial expansion of cancer cells at the secondary site, and that stromal niche signals are crucial to this expansion process. We find that periostin (POSTN), a component of the extracellular matrix, is expressed by fibroblasts in the normal tissue and in the stroma of the primary tumour. Infiltrating tumour cells need to induce stromal POSTN expression in the secondary target organ (in this case lung) to initiate colonization. POSTN is required to allow cancer stem cell maintenance, and blocking its function prevents metastasis. POSTN recruits Wnt ligands and thereby increases Wnt signalling in cancer stem cells. We suggest that the education of stromal cells by infiltrating tumour cells is an important step in metastatic colonization and that preventing de novo niche formation may be a novel strategy for the treatment of metastatic disease.