288 resultados para bone marrow granulomas


Relevância:

80.00% 80.00%

Publicador:

Resumo:

BACKGROUND: Life partnerships other than marriage are rarely studied in childhood cancer survivors (CCS). We aimed (1) to describe life partnership and marriage in CCS and compare them to life partnerships in siblings and the general population; and (2) to identify socio-demographic and cancer-related factors associated with life partnership and marriage. METHODS: As part of the Swiss Childhood Cancer Survivor Study (SCCSS), a questionnaire was sent to all CCS (aged 20-40 years) registered in the Swiss Childhood Cancer Registry (SCCR), aged <16 years at diagnosis, who had survived ≥ 5 years. The proportion with life partner or married was compared between CSS and siblings and participants in the Swiss Health Survey (SHS). Multivariable logistic regression was used to identify factors associated with life partnership or marriage. RESULTS: We included 1,096 CCS of the SCCSS, 500 siblings and 5,593 participants of the SHS. Fewer CCS (47%) than siblings (61%, P < 0.001) had life partners, and fewer CCS were married (16%) than among the SHS population (26%, P > 0.001). Older (OR = 1.14, P < 0.001) and female CCS (OR = 1.85, <0.001) were more likely to have life partners. CCS who had undergone radiotherapy, bone marrow transplants (global P Treatment = 0.018) or who had a CNS diagnosis (global P Diagnosis < 0.001) were less likely to have life partners. CONCLUSION: CCS are less likely to have life partners than their peers. Most CCS with a life partner were not married. Future research should focus on the effect of these disparities on the quality of life of CCS.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mutations of the Fms-like tyrosine kinase 3 (FLT3) can be detected in a significant number of acute myeloid leukemias (AML). Seventy-five cases of acute myeloid leukemia were evaluated for FLT3-internal tandem duplications (ITD) by polymerase chain reaction. Paraffin-embedded formalin-fixed trephine biopsies of these cases were evaluated for expression of phosphorylated signal transducer and activator of transcription 1 (pSTAT1), pSTAT3, and pSTAT5. Specific expression of pSTAT5 was proven in leukemic blasts in situ by double staining with a blast-specific marker. Expression of pSTAT5 in > or =1% of blasts was highly predictive of FLT3-ITD. Neither expression of pSTAT1 nor pSTAT3 were associated with FLT3 mutations. Altogether we conclude that pSTAT5 expression can precisely be assessed by immunohistochemistry in routinely processed bone marrow trephines, STAT5 is highly likely the preferred second messenger of FLT3-mediated signaling in AML, and expression of pSTAT5 is predictive of FLT3-ITD.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The significant development of immunosuppressive drug therapies within the past 20 years has had a major impact on the outcome of clinical solid organ transplantation, mainly by decreasing the incidence of acute rejection episodes and improving short-term patient and graft survival. However, long-term results remain relatively disappointing because of chronic allograft dysfunction and patient morbidity or mortality, which is often related to the adverse effects of immunosuppressive treatment. Thus, the induction of specific immunological tolerance of the recipient towards the allograft remains an important objective in transplantation. In this article, we first briefly describe the mechanisms of allograft rejection and immune tolerance. We then review in detail current tolerogenic strategies that could promote central or peripheral tolerance, highlighting the promises as well as the remaining challenges in clinical transplantation. The induction of haematopoietic mixed chimerism could be an approach to induce robust central tolerance, and we describe recent encouraging reports of end-stage kidney disease patients, without concomitant malignancy, who have undergone combined bone marrow and kidney transplantation. We discuss current studies suggesting that, while promoting peripheral transplantation tolerance in preclinical models, induction protocols based on lymphocyte depletion (polyclonal antithymocyte globulins, alemtuzumab) or co-stimulatory blockade (belatacept) should, at the current stage, be considered more as drug-minimization rather than tolerance-inducing strategies. Thus, a better understanding of the mechanisms that promote peripheral tolerance has led to newer approaches and the investigation of individualized donor-specific cellular therapies based on manipulated recipient regulatory T cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Plasma-cell neoplasms are classically categorized into four groups as: multiple myeloma (MM), plasma-cell leukemias, solitary plasmacytomas (SP) of the bone (SPB), and extramedullary plasmacytomas (EMP). These tumors may be described as localized or diffuse in presentation. Localized plasma-cell neoplasms are rare, and include SP of the skeletal system, accounting for 2-5% of all plasma-cell neoplasms, and EMP of soft tissue, accounting for approximately 3% of all such neoplasms. SP is defined as a solitary mass of neoplastic plasma cells either in the bone marrow or in various soft tissue sites. There appears to be a continuum in which SP often progresses to MM. The main treatment modality for SP is radiation therapy (RT). However, there are no conclusive data in the literature on the optimal AT dose for SP. This review describes the interrelationship of plasma-cell neoplasms, and attempts to determine the minimal RT dose required to obtain local control.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To compare the impact of meeting specific classification criteria [modified New York (mNY), European Spondyloarthropathy Study Group (ESSG), and Assessment of SpondyloArthritis international Society (ASAS) criteria] on anti-tumor necrosis factor (anti-TNF) drug retention, and to determine predictive factors of better drug survival. All patients fulfilling the ESSG criteria for axial spondyloarthritis (SpA) with available data on the axial ASAS and mNY criteria, and who had received at least one anti-TNF treatment were retrospectively retrieved in a single academic institution in Switzerland. Drug retention was computed using survival analysis (Kaplan-Meier), adjusted for potential confounders. Of the 137 patients classified as having axial SpA using the ESSG criteria, 112 also met the ASAS axial SpA criteria, and 77 fulfilled the mNY criteria. Drug retention rates at 12 and 24 months for the first biologic therapy were not significantly different between the diagnostic groups. Only the small ASAS non-classified axial SpA group (25 patients) showed a nonsignificant trend toward shorter drug survival. Elevated CRP level, but not the presence of bone marrow edema on magnetic resonance imaging (MRI) scans, was associated with significantly better drug retention (OR 7.9, ICR 4-14). In this cohort, anti-TNF drug survival was independent of the classification criteria. Elevated CRP level, but not positive MRI, was associated with better drug retention.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

MHC class II (MHCII) molecules play a pivotal role in the induction and regulation of immune responses. The transcriptional coactivator class II transactivator (CIITA) controls MHCII expression. The CIITA gene is regulated by three independent promoters (pI, pIII, pIV). We have generated pIV knockout mice. These mice exhibit selective abrogation of interferon (IFN)-gamma-induced MHCII expression on a wide variety of non-bone marrow-derived cells, including endothelia, epithelia, astrocytes, and fibroblasts. Constitutive MHCII expression on cortical thymic epithelial cells, and thus positive selection of CD4(+) T cells, is also abolished. In contrast, constitutive and inducible MHCII expression is unaffected on professional antigen-presenting cells, including B cells, dendritic cells, and IFN-gamma-activated cells of the macrophage lineage. pIV(-/-) mice have thus allowed precise definition of CIITA pIV usage in vivo. Moreover, they represent a unique animal model for studying the significance and contribution of MHCII-mediated antigen presentation by nonprofessional antigen-presenting cells in health and disease.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

NKT cells, defined as T cells expressing the NK cell marker NK1.1, are involved in tumor rejection and regulation of autoimmunity via the production of cytokines. We show in this study that two types of NKT cells can be defined on the basis of their reactivity to the monomorphic MHC class I-like molecule CD1d. One type of NKT cell is positively selected by CD1d and expresses a biased TCR repertoire together with a phenotype found on activated T cells. A second type of NKT cell, in contrast, develops in the absence of CD1d, and expresses a diverse TCR repertoire and a phenotype found on naive T cells and NK cells. Importantly, the two types of NKT cells segregate in distinct tissues. Whereas thymus and liver contain primarily CD1d-dependent NKT cells, spleen and bone marrow are enriched in CD1d-independent NKT cells. Collectively, our data suggest that recognition of tissue-specific ligands by the TCR controls localization and activation of NKT cells.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The mammalian ortholog of the conserved Drosophila adaptor protein Numb (Nb) and its homolog Numblike (Nbl) modulate neuronal cell fate determination at least in part by antagonizing Notch signaling. Because the Notch pathway has been implicated in regulating hemopoietic stem cell self-renewal and T cell fate specification in mammals, we investigated the role of Nb and Nbl in hemopoiesis using conditional gene targeting. Surprisingly simultaneous deletion of both Nb and Nbl in murine bone marrow precursors did not affect the ability of stem cells to self-renew or to give rise to differentiated myeloid or lymphoid progeny, even under competitive conditions in mixed chimeras. Furthermore, T cell fate specification and intrathymic T cell development were unaffected in the combined absence of Nb and Nbl. Collectively our data indicate that the Nb family of adaptor proteins is dispensable for hemopoiesis and lymphopoiesis in mice, despite their proposed role in neuronal stem cell development.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Résumé Identification, localisation et activation des cellules souches hématopoiétiques dormantes in vivo Les cellules souches somatiques sont présentes dans la majorité des tissus régénératifs comme la peau, l'épithélium intestinal et le système hématopoiétique. A partir d'une seule cellule, elles ont les capacités de produire d'autres cellules souches du même type (auto-renouvellement) et d'engendrer un ensemble défini de cellules progénitrices différenciées qui vont maintenir ou réparer leur tissu hôte. Les cellules souches adultes les mieux caractérisées sont les cellules souches hématopoiétiques (HSC), localisées dans la moelle osseuse. Un des buts de mon travail de doctorat était de caractériser plus en profondeur la localisation des HSCs endogènes in vivo. Pour ce faire, la technique "label retaining assay", se basant sur la division peu fréquentes et sur la dormance des cellules souches, a été utilisée. Après un marquage des souris avec du BrdU (analogue à l'ADN) suivi d'une longue période sans BrdU, les cellules ayant incorporés le marquage ("label retaining cells" LCRs) ont pu être identifiées dans la moelle osseuse. Ces cellules LCRs étaient enrichies 300 fois en cellules de phenotype HSC et, en utilisant de la cytofluorométrie, il a pu être montré qu'environ 15% de toutes les HSCs d'une souris restent dormantes durant plusieures semaines. Ces HSCs dormantes à long terme ne sont probablement pas impliquées dans la maintenance de 'hématopoièse. Par contre, on assiste à l'activation rapide de ces HSCs dormantes lors d'une blessure, comme une ablation myéloide. Elles re-entrent alors en cycle cellulaire et sont essentielles pour une génération rapide des cellules progénitrices et matures qui vont remplacer les cellules perdues. De plus, la détection des LCRs, combinée avec l'utilisation du marqueur de HSCs c-kit, peut être utilisée pour la localisation des HSCs dormantes présentes dans la paroi endostéale de la cavité osseuse. De manière surprenante, les LCRs c-kit+ ont surtout étés trouvées isolées en cellule unique, suggérant que le micro-environement spécifique entourant et maintenant les HSCs, appelé niche, pourrait être très réduit et abriter une seule HSC par niche. Rôles complexes du gène supresseur de tumeur Pten dans le système hématopoiétique La phosphatase PTEN disparaît dans certains cancers héréditaires ou sporadiques humains, comme les gliomes, les cancers de l'utérus ou du sein. Pten inhibe la voie de signalisation de la PI3-kinase et joue un rôle clé dans l'apoptose, la croissance, la prolifération et la migration cellulaire. Notre but était d'étudier le rôle de Pten dans les HSC normale et durant la formation de leucémies. Pour ce faire, nous avons généré un modèle murin dans lequel le gène Pten peut être supprimé dans les cellules hématopoiétiques, incluant les HSCs. Ceci a été possible en croissant l'allèle conditionnelle ptenflox soit avec le transgène MxCre inductible par l'interféron α soit avec le transgène Scl-CreERt inductible par le tamoxifen. Ceci permet la conversion de l'allèle ptenflox en l'allèle nul PtenΔ dans les HSCs et les autres types cellulaires hématopoiétiques. Les souris mutantes Pten développent une splénomégalie massive causée par une expansion dramatiques de toutes les cellules myéloides. De manière interessante, alors que le nombre de HSCs dans la moelle osseuse diminue progressivement, le nombre des HSCs dans la rate augmente de manière proportionnelle. Etrangement, les analyses de cycle cellulaire ont montrés que Pten n'avait que peu ou pas d'effet sur la dormance des HSCs ou sur leur autorenouvellement. En revanche, une augmentation massive du niveau de la cytokine de mobilisation G-CSF a été détéctée dans le serum sanguin, suggérant que la suppression de Pten stimulerait la mobilisation et la migration des HSC de la moelle osseuse vers la rate. Finallement, la transplantation de moelle osseuse délétée en Pten dans des souris immuno-déficientes montre que Pten fonctionnerait comme un suppresseur de tumeur dans le système hématopoiétique car son absence entraîne la formation rapide de leucémies lymphocytaires. Summary Identification, localization and activation of dormant hematopoietic stun cells in vivo Somatic stem cells are present in most self-renewing tissues including the skin, the intestinal epithelium and the hematopoietic system. On a single cell basis they have the capacity to produce more stem cells of the same phenotype (self-renewal) and to give rise to a defined set of mature differentiated progeny, responsible for the maintenance or repair of the host tissue. The best characterized adult stem cell is the hematopoietic stem cell (HSC) located in the bone marrow. One goal of my thesis work was to further characterize the location of endogenous HSCs in vivo. To do this, a technique called "label retaining assay» was used which takes advantage of the fact that stem cells (including HSCs) divide very infrequently and can be dormant for months. After labeling mice with the DNA analogue BrdU followed by a long BrdU free "chase", BrdU "label retaining cells" (CRCs) could be identified in the bone marrow. These CRCs were 300-fold enriched for phenotypic HSCs and by using flow cytometry analysis it could be shown that about 15% of all HSCs in the mouse are dormant for many weeks. Our results suggest that these long-term dormant HSCs are unlikely to be involved in homeostatic maintenance. However they are rapidly activated and reenter the cell cycle in response to injury signals such as myeloid ablation. In addition, detection of LRCs in combination with the HSC marker c-Kit could be used to locate engrafted dormant HSCs close to the endosteal lining of the bone marrow cavities. Most surprisingly, c-Kit+LRCs were found predominantly as single cells suggesting that the specific stem cell maintaining microenvironment, called niche, has limited space and may house only single HSCs. Complex roles of the tumor suppressor gene Pten in the hematopoietic system. The phosphatase PTEN is lost in hereditary and sporadic forms of human cancers, including gliomas, endometrial and breast cancers. Pten inhibits the PI3-kina.se pathway and plays a key role in apoptosis, cell growth, proliferation and migration. Our aim was to study the role of Pten in normal HSCs and during leukemia formation. To do this, we generated a mouse model in which the Pten gene can be deleted in hematopoietic cells including HSCs. This was achieved by crossing the conditional ptenflox allele with either the interferona inducible MxCre or the tamoxifen inducible Scl-CreERT transgene. This allowed the conversion of the ptenflox allele into a pterr' null allele in HSCs and other hematopoietic cell types. As a result Pten mutant mice developed massive splenomegaly due to a dramatic expansion of all myeloid cells. Interestingly, while the number of bone marrow HSCs progressively decreased, the number of HSCs in the spleen increased to a similar extent. Unexpectedly, extensive cell cycle analysis showed that Pten had little or no effect on HSC dormancy or HSC self-renewal. Instead, dramatically increased levels of the mobilizing cytokine G-CSF were detected in the blood serum suggesting that loss-of Pten stimulates mobilization and migration of HSC from the BM to the spleen. Finally, transplantation of Pten deficient BM cells into immuno-compromised mice showed that Pten can function as a tumor suppressor in the hematopoietic system and that its absence leads to the rapid formation of T cell leukemia.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Inflammation significantly contributes to the progression of chronic kidney disease (CKD). Inflammasome-dependent cytokines, such as IL-1β and IL-18, play a role in CKD, but their regulation during renal injury is unknown. Here, we analyzed the processing of caspase-1, IL-1β, and IL-18 after unilateral ureteral obstruction (UUO) in mice, which suggested activation of the Nlrp3 inflammasome during renal injury. Compared with wild-type mice, Nlrp3(-/-) mice had less tubular injury, inflammation, and fibrosis after UUO, associated with a reduction in caspase-1 activation and maturation of IL-1β and IL-18; these data confirm that the Nlrp3 inflammasome upregulates these cytokines in the kidney during injury. Bone marrow chimeras revealed that Nlrp3 mediates the injurious/inflammatory processes in both hematopoietic and nonhematopoietic cellular compartments. In tissue from human renal biopsies, a wide variety of nondiabetic kidney diseases exhibited increased expression of NLRP3 mRNA, which correlated with renal function. Taken together, these results strongly support a role for NLRP3 in renal injury and identify the inflammasome as a possible therapeutic target in the treatment of patients with progressive CKD.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background: Natural Killer (NK) cells are thought to protect from residual leukemic cells in patients receiving stem cell transplantation. However, multiple retrospective analyses of patient data have yielded conflicting conclusions regarding a putative role of NK cells and the essential NK cell recognition events mediating a protective effect against leukemia. Further, a NK cell mediated protective effect against primary leukemia in vivo has not been shown directly.Methodology/Principal Findings: Here we addressed whether NK cells have the potential to control chronic myeloid leukemia (CML) arising based on the transplantation of BCR-ABL1 oncogene expressing primary bone marrow precursor cells into lethally irradiated recipient mice. These analyses identified missing-self recognition as the only NK cell-mediated recognition strategy, which is able to significantly protect from the development of CML disease in vivo.Conclusion: Our data provide a proof of principle that NK cells can control primary leukemic cells in vivo. Since the presence of NK cells reduced the abundance of leukemia propagating cancer stem cells, the data raise the possibility that NK cell recognition has the potential to cure CML, which may be difficult using small molecule BCR-ABL1 inhibitors. Finally, our findings validate approaches to treat leukemia using antibody-based blockade of self-specific inhibitory MHC class I receptors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

MHC class II (MHCII) molecules play a pivotal role in the induction and regulation of immune responses. The transcriptional coactivator class II transactivator (CIITA) controls MHCII expression. The CIITA gene is regulated by three independent promoters (pI, pIII, pIV). We have generated pIV knockout mice. These mice exhibit selective abrogation of interferon (IFN)-gamma-induced MHCII expression on a wide variety of non-bone marrow-derived cells, including endothelia, epithelia, astrocytes, and fibroblasts. Constitutive MHCII expression on cortical thymic epithelial cells, and thus positive selection of CD4(+) T cells, is also abolished. In contrast, constitutive and inducible MHCII expression is unaffected on professional antigen-presenting cells, including B cells, dendritic cells, and IFN-gamma-activated cells of the macrophage lineage. pIV(-/-) mice have thus allowed precise definition of CIITA pIV usage in vivo. Moreover, they represent a unique animal model for studying the significance and contribution of MHCII-mediated antigen presentation by nonprofessional antigen-presenting cells in health and disease.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

B cells undergo a complex series of maturation and selection steps in the bone marrow and spleen during differentiation into mature immune effector cells. The tumor necrosis factor (TNF) family member B cell activating factor of the TNF family (BAFF) (BLyS/TALL-1) plays an important role in B cell homeostasis. BAFF and its close homologue a proliferation-inducing ligand (APRIL) have both been shown to interact with at least two receptors, B cell maturation antigen (BCMA) and transmembrane activator and cyclophilin ligand interactor (TACI), however their relative contribution in transducing BAFF signals in vivo remains unclear. To functionally inactivate both BAFF and APRIL, mice transgenic for a soluble form of TACI were generated. They display a developmental block of B cell maturation in the periphery, leading to a severe depletion of marginal zone and follicular B2 B cells, but not of peritoneal B1 B cells. In contrast, mice transgenic for a soluble form of BCMA, which binds APRIL, have no detectable B cell phenotype. This demonstrates a crucial role for BAFF in B cell maturation and strongly suggests that it signals via a BCMA-independent pathway and in an APRIL-dispensable way.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Interleukin-7 (IL-7) is crucial for the development of T and B lymphocytes from common lymphoid progenitors (CLPs) and for the maintenance of mature T lymphocytes. Its in vivo role for dendritic cells (DCs) has been poorly defined. Here, we investigated whether IL-7 is important for the development or maintenance of different DC types. Bone marrow-derived DCs expressed the IL-7 receptor (IL-7R) and survived significantly longer in the presence of IL-7. Migratory DCs (migDCs) isolated from lymph nodes also expressed IL-7R. Surprisingly, IL-7R was not required for their maintenance but indirectly for their development. Conventional DCs (cDCs) and plasmacytoid DCs (pDCs) resident in lymph nodes and spleen were IL-7R(-). Using mixed bone marrow chimeras, we observed an intrinsic requirement for IL-7R signals in their development. As the number of CLPs but not myeloid progenitors was reduced in the absence of IL-7 signals, we propose that a large fraction of cDCs and pDCs derives from CLPs and shares not only the lymphoid origin but also the IL-7 requirement with lymphocyte precursors.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recurrent chromosomal translocations associated to peripheral T-cell lymphomas (PTCL) are rare. Here, we report a case of PTCL, not otherwise specified (NOS) with the karyotype 46,Y,add(X)(p22),t(6;14)(p25;q11) and FISH-proved breakpoints in the IRF4 and TCRAD loci, leading to juxtaposition of both genes. A 64-year-old male patient presented with mild cytopenias and massive splenomegaly. Splenectomy showed diffuse red pulp involvement by a pleomorphic medium- to large-cell T-cell lymphoma with a CD2+ CD3+ CD5- CD7- CD4+ CD8+/- CD30- TCRbeta-F1+ immunophenotype, an activated cytotoxic profile, and strong MUM1 expression. The clinical course was marked by disease progression in the bone marrow under treatment and death at 4 months. In contrast with two t(6;14)(p25;q11.2)-positive lymphomas previously reported to be cytotoxic PTCL, NOS with bone marrow and skin involvement, this case was manifested by massive splenomegaly, expanding the clinical spectrum of PTCLs harboring t(6;14)(p25;q11.2) and supporting consideration of this translocation as a marker of biological aggressiveness.