54 resultados para basis of the solution space of a homogeneous sparse linear system
Resumo:
Applications of genetic constructs with multiple promoters, which are fused with reporter genes and simultaneous monitoring of various events in cells, have gained special attention in recent years. Lentiviral vectors, with their distinctive characteristics, have been considered to monitor the developmental changes of cells in vitro. In this study, we constructed a novel lentiviral vector (FUM-M), containing two germ cell-specific promoters (Stra8 and c-kit), fused with ZsGreen and DsRed2 reporter genes, and evaluated its efficiency in different cells following treatments with retinoic acid and DMSO. Several cell lines (P19, GC-1 spg and HEK293T) were transduced with this vector, and functional capabilities of the promoters were verified by flow cytometry and quantitative RT-PCR. Our results indicate that FUM-M shows dynamic behavior in the presence and absence of extrinsic factors. A correlation was also observed between the function of promoters, present in the lentiviral construct and the endogenous level of the Stra8 and c-kit mRNAs in the cells. In conclusion, we recommend this strategy, which needs further optimization of the constructs, as a beneficial and practical way to screen chemical inducers involved in cellular differentiation toward germ-like cells.
Resumo:
SUMMARY Under stressful conditions, mutant or post-translationally modified proteins may spontaneously misfold and form toxie species, which may further assemble into a continuum of increasingly large and insoluble toxic oligomers that may further condense into less toxic, compact amyloids in the cell Intracellular accumulation of aggregated proteins is a common denominator of several neurodegenerative diseases. To cope with the cytotoxicity induced by abnormal, aggregated proteins, cells have evolved various defence mechanisms among which, the molecular chaperones Hsp70. Hsp70 (DnaK in E. coii) is an ATPase chaperone involved in many physiological processes in the cell, such as assisting de novo protein folding, dissociating native protein oligomers and serving as pulling motors in the import of polypeptides into organelles. In addition, Hsp70 chaperones can actively solubilize and reactivate stable protein aggregates, such as heat- or mutation-induced aggregates. Hsp70 requires the cooperation of two other co-chaperones: Hsp40 and NEF (Nucleotide exchange factor) to fulfil its unfolding activity. In the first experimental section of this thesis (Chapter II), we studied by biochemical analysis the in vitro interaction between recombinant human aggregated α-synuclein (a-Syn oligomers) mimicking toxic a-Syn oligomers species in PD brains, with a model Hsp70/Hsp40 chaperone system (the E. coii DnaK/DnaJ/GrpE). We found that chaperone-mediated unfolding of two denatured model enzymes were strongly affected by α-Syn oligomers but, remarkably, not by monomers. This in vitro observed dysfunction of the Hsp70 chaperone system resulted from the sequestration of the Hsp40 proteins by the oligomeric α-synuclein species. In the second experimental part (Chapter III), we performed in vitro biochemical analysis of the co-chaperone function of three E. coii Hsp40s proteins (DnaJ, CbpA and DjlA) in the ATP-fuelled DnaK-mediated refolding of a model DnaK chaperone substrate into its native state. Hsp40s activities were compared using dose-response approaches in two types of in vitro assays: refolding of heat-denatured G6PDH and DnaK-mediated ATPase activity. We also observed that the disaggregation efficiency of Hsp70 does not directly correlate with Hsp40 binding affinity. Besides, we found that these E. coii Hsp40s confer substrate specificity to DnaK, CbpA being more effective in the DnaK-mediated disaggregation of large G6PDH aggregates than DnaJ under certain conditions. Sensibilisées par différents stress ou mutations, certaines protéines fonctionnelles de la cellule peuvent spontanément se convertir en formes inactives, mal pliées, enrichies en feuillets bêta, et exposant des surfaces hydrophobes favorisant l'agrégation. Cherchant à se stabiliser, les surfaces hydrophobes peuvent s'associer aux régions hydrophobes d'autres protéines mal pliées, formant des agrégats protéiques stables: les amyloïdes. Le dépôt intracellulaire de protéines agrégées est un dénominateur commun à de nombreuses maladies neurodégénératives. Afin de contrer la cytotoxicité induite par les protéines agrégées, les cellules ont développé plusieurs mécanismes de défense, parmi lesquels, les chaperonnes moléculaires Hsp70. Hsp70 nécessite la collaboration de deux autres co-chaperonnes : Hsp40 et NEF pour accomplir son activité de désagrégation. Hsp70 (DnaK, chez E. coli) est impliquée par ailleurs dans d'autres fonctions physiologiques telles que l'assistanat de protéines néosynthétisées à la sortie du ribosome, ou le transport transmembranaire de polypeptides. Par ailleurs, les chaperonnes Hsp70 peuvent également solubiliser et réactiver des protéines agrégées à la suite d'un stress ou d'une mutation. Dans la première partie expérimentale de cette thèse (Chapter II), nous avons étudié in vitro l'interaction entre les oligomères d'a-synucleine, responsables entre autres, de la maladie de Parkinson, et le système chaperon Hsp70/Hsp40 (système Escherichia coli DnaK/DnaJ/GrpE). Nous avons démontré que contrairement aux monomères, les oligomères d'a-synucleine inhibaient le système chaperon lors du repliement de protéines agrégées. Cette dysfonction du système chaperon résulte de la séquestration des chaperonnes Hsp40 par les oligomères d'a-synucleine. La deuxième partie expérimentale (Chapitre III) est consacrée à une étude in vitro de la fonction co-chaperonne de trois Hsp40 d'is. coli (DnaJ, CbpA, et DjlA) lors de la désagrégation par DnaK d'une protéine pré-agrégée. Leurs activités ont été comparées par le biais d'une approche dose-réponse au niveau de deux analyses enzymatiques: le repliement de la protéine agrégée et l'activité ATPase de DnaK. Par ailleurs, nous avons mis en évidence que l'efficacité de désagrégation d'Hsp70 et l'affinité des chaperonnes Hsp40 vis-à-vis de leur substrat n'étaient pas corrélées positivement. Nous avons également montré que ces trois chaperonnes Hsp40 étaient directement impliquées dans la spécificité des fonctions accomplies par les chaperonnes Hsp70. En effet, DnaK en présence de CbpA assure la désagrégation de large agrégats protéiques avec une efficacité nettement plus accrue qu'en présence de DnaJ.
Resumo:
Abstract Empirical testing of candidate vaccines has led to the successful development of a number of lifesaving vaccines. The advent of new tools to manipulate antigens and new methods and vectors for vaccine delivery has led to a veritable explosion of potential vaccine designs. As a result, selection of candidate vaccines suitable for large-scale efficacy testing has become more challenging. This is especially true for diseases such as dengue, HIV, and tuberculosis where there is no validated animal model or correlate of immune protection. Establishing guidelines for the selection of vaccine candidates for advanced testing has become a necessity. A number of factors could be considered in making these decisions, including, for example, safety in animal and human studies, immune profile, protection in animal studies, production processes with product quality and stability, availability of resources, and estimated cost of goods. The "immune space template" proposed here provides a standardized approach by which the quality, level, and durability of immune responses elicited in early human trials by a candidate vaccine can be described. The immune response profile will demonstrate if and how the candidate is unique relative to other candidates, especially those that have preceded it into efficacy testing and, thus, what new information concerning potential immune correlates could be learned from an efficacy trial. A thorough characterization of immune responses should also provide insight into a developer's rationale for the vaccine's proposed mechanism of action. HIV vaccine researchers plan to include this general approach in up-selecting candidates for the next large efficacy trial. This "immune space" approach may also be applicable to other vaccine development endeavors where correlates of vaccine-induced immune protection remain unknown.
Resumo:
BACKGROUND: The aim of this study was to evaluate the efficacy of sustained release of vancomycin and teicoplanin from a resorbable gelatin glycerol sponge, in order to establish a new delivery system for local anti-infective therapy. MATERIALS AND METHODS: 60 plasticized glycerol gelatin sponges containing either 10 or 20% gelatin (w/v) were incubated in vancomycin or teicoplanin solution at 20 degrees C for either 1 or 24 h. In vitro release properties of the sponges were investigated over a period of 1 week by determining the levels of vancomycin and teicoplanin eluted in plasma using fluorescent polarization immunoassay. The rate constant and the half-life for the antibiotic release of each group were calculated by linear regression assuming first order kinetics. RESULTS: Presoaking for 24 h was associated with a significant increase in the total antibiotic release in all groups opposed to 1 h of incubation, except for the 10% sponges presoaked in teicoplanin. Doubling the gelatin content of the sponges from 10 to 20% significantly increased the total release of antibiotic load only in teicoplanin-containing sponges after 24 h incubation. In all corresponding groups investigated, release of vancomycin was more prolonged compared to teicoplanin, which allowed a gradual release beyond 5 days. The half-life (h +/- SEM) of both types of vancomycin-containing sponges was significantly prolonged by 24 h incubation in comparison to 1 h incubation (29.1 +/- 5.9 vs 5.9 +/- 1.0; p < 0.001, 30.0 +/- 2.1 vs 11.1 +/- 1.9; p < 0.001). However, neither doubling the gelatin content of the sponges nor a prolonged incubation was associated with a significantly prolonged delivery of teicoplanin. CONCLUSION: This study demonstrated a better diffusion-controlled release of vancomycin-impregnated glycerol gelatin sponges compared to those pretreated with teicoplanin. The plasticized glycerol gelatin sponge may be a promising carrier for the application of vancomycin to infected wounds for local anti-infective therapy.
Resumo:
PURPOSE: This descriptive article illustrates the application of Global Positioning System (GPS) professional receivers in the field of locomotion studies. The technological challenge was to assess the external mechanical work in outdoor walking. METHODS: Five subjects walked five times during 5 min on an athletic track at different imposed stride frequency (from 70-130 steps x min(-1)). A differential GPS system (carrier phase analysis) measured the variation of the position of the trunk at 5 Hz. A portable indirect calorimeter recorded breath-by-breath energy expenditure. RESULTS: For a walking speed of 1.05 +/- 0.11 m x s(-1), the vertical lift of the trunk (43 +/- 14 mm) induced a power of 46.0 +/- 20.4 W. The average speed variation per step (0.15 +/- 0.03 m x s(-1)) produced a kinetic power of 16.9 +/- 7.2 W. As compared with commonly admitted values, the energy exchange (recovery) between the two energy components was low (39.1 +/- 10.0%), which induced an overestimated mechanical power (38.9 +/- 18.3 W or 0.60 W x kg(-1) body mass) and a high net mechanical efficiency (26.9 +/- 5.8%). CONCLUSION: We assumed that the cause of the overestimation was an unwanted oscillation of the GPS antenna. It is concluded that GPS (in phase mode) is now able to record small body movements during human locomotion, and constitutes a promising tool for gait analysis of outdoor unrestrained walking. However, the design of the receiver and the antenna must be adapted to human experiments and a thorough validation study remains to be conducted.
Resumo:
Microphthalmia with linear skin defects (MLS) syndrome is an X-linked male-lethal disorder also known as MIDAS (microphthalmia, dermal aplasia, and sclerocornea). Additional clinical features include neurological and cardiac abnormalities. MLS syndrome is genetically heterogeneous given that heterozygous mutations in HCCS or COX7B have been identified in MLS-affected females. Both genes encode proteins involved in the structure and function of complexes III and IV, which form the terminal segment of the mitochondrial respiratory chain (MRC). However, not all individuals with MLS syndrome carry a mutation in either HCCS or COX7B. The majority of MLS-affected females have severe skewing of X chromosome inactivation, suggesting that mutations in HCCS, COX7B, and other as-yet-unidentified X-linked gene(s) cause selective loss of cells in which the mutated X chromosome is active. By applying whole-exome sequencing and filtering for X-chromosomal variants, we identified a de novo nonsense mutation in NDUFB11 (Xp11.23) in one female individual and a heterozygous 1-bp deletion in a second individual, her asymptomatic mother, and an affected aborted fetus of the subject's mother. NDUFB11 encodes one of 30 poorly characterized supernumerary subunits of NADH:ubiquinone oxidoreductase, known as complex I (cI), the first and largest enzyme of the MRC. By shRNA-mediated NDUFB11 knockdown in HeLa cells, we demonstrate that NDUFB11 is essential for cI assembly and activity as well as cell growth and survival. These results demonstrate that X-linked genetic defects leading to the complete inactivation of complex I, III, or IV underlie MLS syndrome. Our data reveal an unexpected role of cI dysfunction in a developmental phenotype, further underscoring the existence of a group of mitochondrial diseases associated with neurocutaneous manifestations.
Resumo:
BACKGROUND: Frequent emergency department users represent a small number of patients but account for a large number of emergency department visits. They should be a focus because they are often vulnerable patients with many risk factors affecting their quality of life (QoL). Case management interventions have resulted in a significant decrease in emergency department visits, but association with QoL has not been assessed. One aim of our study was to examine to what extent an interdisciplinary case management intervention, compared to standard emergency care, improved frequent emergency department users' QoL. METHODS: Data are part of a randomized, controlled trial designed to improve frequent emergency department users' QoL and use of health-care resources at the Lausanne University Hospital, Switzerland. In total, 250 frequent emergency department users (≥5 attendances during the previous 12 months; ≥ 18 years of age) were interviewed between May 2012 and July 2013. Following an assessment focused on social characteristics; social, mental, and somatic determinants of health; risk behaviors; health care use; and QoL, participants were randomly assigned to the control or the intervention group (n=125 in each group). The final sample included 194 participants (20 deaths, 36 dropouts, n=96 in the intervention group, n=99 in the control group). Participants in the intervention group received a case management intervention by an interdisciplinary, mobile team in addition to standard emergency care. The case management intervention involved four nurses and a physician who provided counseling and assistance concerning social determinants of health, substance-use disorders, and access to the health-care system. The participants' QoL was evaluated by a study nurse using the WHOQOL-BREF five times during the study (at baseline, and at 2, 5.5, 9, and 12 months). Four of the six WHOQOL dimensions of QoL were retained here: physical health, psychological health, social relationship, and environment, with scores ranging from 0 (low QoL) to 100 (high QoL). A linear, mixed-effects model with participants as a random effect was run to analyze the change in QoL over time. The effects of time, participants' group, and the interaction between time and group were tested. These effects were controlled for sociodemographic characteristics and health-related variables (i.e., age, gender, education, citizenship, marital status, type of financial resources, proficiency in French, somatic and mental health problems, and behaviors at risk).
Resumo:
A mediator is a dependent variable, m (e.g., charisma), that is thought to channel the effect of an independent variable, x (e.g., receiving training or not), on another dependent variable (e.g., subordinate satisfaction), y. In experimental settings x is manipulated-subjects are randomized to treatment-to isolate the causal effect of x on other variables. If m is not or cannot be manipulated, which is often the case, its causal effect on other variables cannot be determined; thus, standard mediation tests cannot inform policy or practice. I will show how an econometric procedure, called instrumental-variable estimation, can examine mediation in such cases.
Resumo:
Pseudomonas azelaica HBP1 is one of the few bacteria known to completely mineralize the biocide and toxic compound 2-hydroxybiphenyl (2-HBP), but the mechanisms of its tolerance to the toxicity are unknown. By transposon mutant analysis and screening for absence of growth on water saturating concentrations of 2-HBP (2.7 mM) we preferentially found insertions in three genes with high homology to the mexA, mexB, and oprM efflux system. Mutants could grow at 2-HBP concentrations below 100 μM but at lower growth rates than the wild-type. Exposure of the wild-type to increasing 2-HBP concentrations resulted in acute cell growth arrest and loss of membrane potential, to which the cells adapt after a few hours. By using ethidium bromide (EB) as proxy we could show that the mutants are unable to expel EB effectively. Inclusion of a 2-HBP reporter plasmid revealed that the wild-type combines efflux with metabolism at all 2-HBP concentrations, whereas the mutants cannot remove the compound and arrest metabolism at concentrations above 24 μM. The analysis thus showed the importance of the MexAB-OprM system for productive metabolism of 2-HBP.