51 resultados para aromatic carbonyl compound


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Khat (Catha edulis Forsk., Celastraceae) is a flowering perennial shrub with a long history of use and cultivation in East Africa and the Arabian Peninsula. Young khat leaves are traditionally chewed in social gatherings to attain special states of mind, aimed especially at awakeness and enhanced mind focus. Since khat chewing contains amphetamine-like molecules and reponedly causes addiction among users it is banned in most countries, but it is part of social life and legal in some countries. The main phannacoactive compounds present in khat leaves are the phenylpropylamino alkaloids (S) cathinone and (S)-cathine. L-Phenylalan:ine serves as a key biosynthetic precursor of phenylpropylalkaloids. Phenylalanine is converted by a series of not yet fully characterized reactions involving chain-shortening to benzaldehyde, then ligation to decarboxylated pyruvate, oxidation and incorporation of an amino group to yield (S)-cath inone, the most active compound accumulating in young leaves. (S)-Cathinone is subsequently reduced to (S)-cathine, the main compound accumulated in mature leaves, but pharmacologically less active than (S)-cathinone. The pharmacological prospects of khat uses and some personal experiences of one of the authors in khat chewing are described here.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exposing the human bronchial epithelial cell line BEAS-2B to the nitric oxide (NO) donor sodium 1-(N,N-diethylamino)diazen-1-ium-1, 2-diolate (DEA/NO) at an initial concentration of 0.6 mM while generating superoxide ion at the rate of 1 microM/min with the hypoxanthine/xanthine oxidase (HX/XO) system induced C:G-->T:A transition mutations in codon 248 of the p53 gene. This pattern of mutagenicity was not seen by 'fish-restriction fragment length polymorphism/polymerase chain reaction' (fish-RFLP/PCR) on exposure to DEA/NO alone, however, exposure to HX/XO led to various mutations, suggesting that co-generation of NO and superoxide was responsible for inducing the observed point mutation. DEA/NO potentiated the ability of HX/XO to induce lipid peroxidation as well as DNA single- and double-strand breaks under these conditions, while 0.6 mM DEA/NO in the absence of HX/XO had no significant effect on these parameters. The results show that a point mutation seen at high frequency in certain common human tumors can be induced by simultaneous exposure to reactive oxygen species and a NO source.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Purpose: To report the clinical and genetic study of a child with bilateral anophthalmia. Methods: A 14-year-old Egyptian boy, born from consanguineous parents, underwent a general and a full ophthalmological examination. Mutation screen of the A/M genes with recessive inheritance was done stepwise and DNA was analyzed by Sanger sequencing. Results: Bilateral anophthalmia, arachnodactyly of the feet and high arched palate were observed on general examination. The parents were first cousins and healthy. Sequencing analysis revealed a novel compound heterozygous mutation in one of the copy of exon 2 of VSX2 and a possible deletion of at least exon 2 on the other allele. Conclusions: A compound heterozygous VSX2 mutation associated with anophthalmia was identified in a patient from an Egyptian consanguineous family. This report brings the number of VSX2 mutation in anophthalmia/microphthalmia (A/M) to 13. Functional consequences of the reported changes still need to be characterized, as well as the percentage of A/M caused by mutations in the VSX2 gene. This family also shows that despite consanguinity, heterozygous mutations can also happen and one should not restrict the molecular analysis to homozygous mutations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Resistance to semi-dry environments has been considered a crucial trait for superior growth and survival of strains used for bioaugmentation in contaminated soils. In order to compare water stress programmes, we analyse differential gene expression among three phylogenetically different strains capable of aromatic compound degradation: Arthrobacter chlorophenolicus A6, Sphingomonas wittichii RW1 and Pseudomonas veronii 1YdBTEX2. Standardized laboratory-induced water stress was imposed by shock exposure of liquid cultures to water potential decrease, induced either by addition of solutes (NaCl, solute stress) or by addition of polyethylene glycol (matric stress), both at absolute similar stress magnitudes and at those causing approximately similar decrease of growth rates. Genome-wide differential gene expression was recorded by micro-array hybridizations. Growth of P. veronii 1YdBTEX2 was the most sensitive to water potential decrease, followed by S. wittichii RW1 and A. chlorophenolicus A6. The number of genes differentially expressed under decreasing water potential was lowest for A. chlorophenolicus A6, increasing with increasing magnitude of the stress, followed by S. wittichii RW1 and P. veronii 1YdBTEX2. Gene inspection and gene ontology analysis under stress conditions causing similar growth rate reduction indicated that common reactions among the three strains included diminished expression of flagellar motility and increased expression of compatible solutes (which were strain-specific). Furthermore, a set of common genes with ill-defined function was found between all strains, including ABC transporters and aldehyde dehydrogenases, which may constitute a core conserved response to water stress. The data further suggest that stronger reduction of growth rate of P. veronii 1YdBTEX2 under water stress may be an indirect result of the response demanding heavy NADPH investment, rather than the presence or absence of a suitable stress defence mechanism per se.