195 resultados para adipose tissue remodeling
Resumo:
Angiogenesis, the formation of new blood vessels sprouting from existing ones, occurs in several situations like wound healing, tissue remodeling, and near growing tumors. Under hypoxic conditions, tumor cells secrete growth factors, including VEGF. VEGF activates endothelial cells (ECs) in nearby vessels, leading to the migration of ECs out of the vessel and the formation of growing sprouts. A key process in angiogenesis is cellular self-organization, and previous modeling studies have identified mechanisms for producing networks and sprouts. Most theoretical studies of cellular self-organization during angiogenesis have ignored the interactions of ECs with the extra-cellular matrix (ECM), the jelly or hard materials that cells live in. Apart from providing structural support to cells, the ECM may play a key role in the coordination of cellular motility during angiogenesis. For example, by modifying the ECM, ECs can affect the motility of other ECs, long after they have left. Here, we present an explorative study of the cellular self-organization resulting from such ECM-coordinated cell migration. We show that a set of biologically-motivated, cell behavioral rules, including chemotaxis, haptotaxis, haptokinesis, and ECM-guided proliferation suffice for forming sprouts and branching vascular trees.
Resumo:
Reconstructive surgery takes an important place in breast cancer treatment. Immediate breast reconstruction is performed during the same operation as mastectomy. It is contraindicated following radiotherapy. Reconstruction performed after mastectomy is called differed breast reconstruction. It is completed 6 months after chemotherapy and 1 year after radiotherapy. Prosthetic breast reconstruction is indicated when tissues are of good qualities and breast are small. Autologous reconstruction is performed in case of radiotherapy or large breast. After breast reconstruction, imperfections can be corrected with autologous fat injection.
Resumo:
BACKGROUND: Subconjunctival orbital fat prolapse is a benign entity characterized by orbital fat herniation through a dehiscence in Tenon's capsule, usually between the superior and lateral recti muscles. It is often associated with ocular trauma or surgery, although spontaneous cases have also been reported with a predilection for obese individuals. PATIENTS AND METHODS: A retrospective study of four subconjunctival orbital-fat prolapse cases with no history of ocular surgery or trauma was performed. A trans-conjunctival surgical approach with Tenon's capsule repair was offered to all subjects. Differential diagnosis is discussed. RESULTS: The diagnosis of subconjunctival orbital fat prolapse was confirmed in all cases by histopathological examination. Functional and aesthetic postoperative results were excellent, with no recurrences during follow-up, for all cases. CONCLUSIONS: Although rare, subconjunctival orbital fat prolapse should be recognized. Surgical management offers excellent results.
Resumo:
The aim of this study was to evaluate the effect of ovariectomy on the acute-phase response of inflammatory stress. Ex vivo adrenocortical, peripheral mononuclear cell (PMNC) and adipocyte activities were studied in intact and ovariectomized mice. Endotoxemia was mimicked by intraperitoneal administration of bacterial lipopolysaccharide (LPS; 25 mg per mouse) to sham-operated and 21-day ovariectomized mice. Circulating corticosterone, tumor necrosis factor-alpha (TNFalpha) and leptin concentrations were monitored before and 30-120 min after the administration of LPS. Additionally, in vitro experiments were performed with isolated corticoadrenal cells, PMNCs and omental adipocytes from sham-operated and ovariectomized mice incubated with specific secretagogues. The results indicate that while ovariectomy enhanced TNFalpha secretion after in vivo administration of LPS, it reduced corticoadrenal response and abrogated LPS-elicited leptin secretion into the circulation. While the corticoadrenal sensitivity to ACTH stimulation was reduced by ovariectomy, the LPS-induced PMNC response was not affected. Exogenous leptin enhanced baseline PMNC function regardless of surgery. Finally, ovariectomy drastically reduced in vitro adipocyte functionality. Our data support the notion that ovariectomy modified neuroendocrine-immune-adipocyte axis function and strongly suggest that ovarian activity could play a pivotal role in the development of an adequate immune defense mechanism after injury.
Resumo:
PPARβ/δ protects against obesity by reducing dyslipidemia and insulin resistance via effects in muscle, adipose tissue, and liver. However, its function in pancreas remains ill defined. To gain insight into its hypothesized role in β cell function, we specifically deleted Pparb/d in the epithelial compartment of the mouse pancreas. Mutant animals presented increased numbers of islets and, more importantly, enhanced insulin secretion, causing hyperinsulinemia. Gene expression profiling of pancreatic β cells indicated a broad repressive function of PPARβ/δ affecting the vesicular and granular compartment as well as the actin cytoskeleton. Analyses of insulin release from isolated PPARβ/δ-deficient islets revealed an accelerated second phase of glucose-stimulated insulin secretion. These effects in PPARβ/δ-deficient islets correlated with increased filamentous actin (F-actin) disassembly and an elevation in protein kinase D activity that altered Golgi organization. Taken together, these results provide evidence for a repressive role for PPARβ/δ in β cell mass and insulin exocytosis, and shed a new light on PPARβ/δ metabolic action.
Resumo:
The International Society of Urological Pathology Consensus Conference on Handling and Staging of Radical Prostatectomy Specimens in Boston made recommendations regarding the standardization of pathology reporting of radical prostatectomy specimens. Issues relating to extraprostatic extension (pT3a disease), bladder neck invasion, lymphovascular invasion and the definition of pT4 were coordinated by working group 3. It was agreed that prostate cancer can be categorized as pT3a in the absence of adipose tissue involvement when cancer bulges beyond the contour of the gland or beyond the condensed smooth muscle of the prostate at posterior and posterolateral sites. Extraprostatic extension can also be identified anteriorly. It was agreed that the location of extraprostatic extension should be reported. Although there was consensus that the amount of extraprostatic extension should be quantitated, there was no agreement as to which method of quantitation should be employed. There was overwhelming consensus that microscopic urinary bladder neck invasion by carcinoma should be reported as stage pT3a and that lymphovascular invasion by carcinoma should be reported. It is recommended that these elements are considered in the development of practice guidelines and in the daily practice of urological surgical pathology.
Resumo:
AIMS: To investigate the effect of surgical gastric bypass-induced weight loss and related alterations in endocannabinoids (ECs) and adipocytokine plasma levels on coronary circulatory dysfunction in morbidly obese (MOB) individuals. METHODS AND RESULTS: Myocardial blood flow (MBF) responses to cold pressor test (CPT) from rest (ΔMBF) and during pharmacologically induced hyperaemia were measured with &supl;³N-ammonia PET/CT in 18 MOB individuals with a body mass index (BMI) > 40 kg/m² at baseline and after a median follow-up period of 22 months. Gastric bypass intervention decreased BMI from a median of 44.8 (inter-quartile range: 43.3, 48.2) to 30.8 (27.3, 34.7) kg/m² (P < 0.0001). This decrease in BMI was accompanied by a marked improvement in endothelium-related ΔMBF to CPT and hyperaemic MBFs, respectively [0.34 (0.18, 0.41) from 0.03 (-0.08, 0.15) mL/g/min, P = 0.002; and 2.51 (2.17, 2.64) from 1.53 (1.39, 2.18) mL/g/min, P < 0.001]. There was an inverse correlation between decreases in plasma concentrations of the EC anandamide and improvement in ΔMBF to CPT (r = -0.59, P = 0.009), while increases in adiponectin plasma levels correlated positively with hyperaemic MBFs (r = 0.60, P = 0.050). Conversely, decreases in leptin plasma concentrations were not observed to correlate with the improvement in coronary circulatory function (r = 0.22, P = 0.400, and r = -0.31, P = 0.250). CONCLUSIONS: Gastric bypass-related reduction of BMI in MOB individuals beneficially affects coronary circulatory dysfunction. The dysbalance between ECs and adipocytokines appears to be an important determinant of coronary circulatory function in obesity.
Resumo:
Brown adipose tissue and liver of hibernating, arousing and euthermic individuals of the dormouse Muscardinus avellanarius were studies using ultrastructural cytochemistry and immunocytochemistry with the aim to investigate possible fine structural modifications of the cell nucleus during the seasonal cycle. The general morphology of brown adipocyte and hepatocyte nuclei was similar in the three experimental groups. However, three nuclear structural constituents were identified only in hibernating individuals: coiled bodies (CBs) and amorphous bodies (ABs) were observed in hepatocytes and, together with bundles of nucleoplasmic fibrils (NF), were present in brown adipocytes of hibernating dormice. In arousing animals only some structural constituents suggestive of poorly structured CBs were found. The latter showed the same immunocytochemical features as CBs of hibernating individuals, suggesting that they are disappearing CBs. A possible involvement of CBs in storing and/or processing RNA which must be rapidly and abundantly released upon arousal is discussed. ABs similarly to CBs contain RNA and nucleoplasmic ribonucleoproteins (RNPs) and could also be involved in mRNA pathways. NF do not contain nucleic acids or RNPs and seem to be composed of protein-aceous material; their functional role in the nuclear metabolism of hibernating brown adipocytes remains unclear.
Resumo:
BACKGROUND: Fat redistribution, increased inflammation and insulin resistance are prevalent in non-diabetic subjects treated with maintenance dialysis. The aim of this study was to test whether pioglitazone, a powerful insulin sensitizer, alters body fat distribution and adipokine secretion in these subjects and whether it is associated with improved insulin sensitivity. TRIAL DESIGN: This was a double blind cross-over study with 16 weeks of pioglitazone 45 mg vs placebo involving 12 subjects. METHODS: At the end of each phase, body composition (anthropometric measurements, dual energy X-ray absorptometry (DEXA), abdominal CT), hepatic and muscle insulin sensitivity (2-step hyperinsulinemic euglycemic clamp with 2H2-glucose) were measured and fasting blood adipokines and cardiometabolic risk markers were monitored. RESULTS: Four months treatment with pioglitazone had no effect on total body weight or total fat but decreased the visceral/sub-cutaneous adipose tissue ratio by 16% and decreased the leptin/adiponectin (L/A) ratio from 3.63×10-3 to 0.76×10-3. This was associated with a 20% increase in hepatic insulin sensitivity without changes in muscle insulin sensitivity, a 12% increase in HDL cholesterol and a 50% decrease in CRP. CONCLUSIONS/LIMITATIONS: Pioglitazone significantly changes the visceral-subcutaneous fat distribution and plasma L/A ratio in non diabetic subjects on maintenance dialysis. This was associated with improved hepatic insulin sensitivity and a reduction of cardio-metabolic risk markers. Whether these effects may improve the outcome of non diabetic end-stage renal disease subjects on maintenance dialysis still needs further evaluation. TRIAL REGISTRATION: ClinicalTrial.gov NCT01253928.
Smad3 deficiency in mice protects against insulin resistance and obesity induced by a high-fat diet.
Resumo:
OBJECTIVE-Obesity and associated pathologies are major global health problems. Transforming growth factor-beta/Smad3 signaling has been implicated in various metabolic processes, including adipogenesis, insulin expression, and pancreatic beta-cell function. However, the systemic effects of Smad3 deficiency on adiposity and insulin resistance in vivo remain elusive. This study investigated the effects of Smad3 deficiency on whole-body glucose and lipid homeostasis and its contribution to the development of obesity and type 2 diabetes.RESEARCH DESIGN AND METHODS-We compared various metabolic profiles of Smad3-knockout and wild-type mice. We also determined the mechanism by which Smad3 deficiency affects the expression of genes involved in adipogenesis and metabolism. Mice were then challenged with a high-fat diet to study the impact of Smad3 deficiency on the development of obesity and insulin resistance.RESULTS-Smad3-knockout mice exhibited diminished adiposity with improved glucose tolerance and insulin sensitivity. Chromatin immunoprecipitation assay revealed that Smad3 deficiency increased CCAAT/enhancer-binding protein beta-C/EBP homologous protein 10 interaction and exerted a differential regulation on proliferator-activated receptor beta/delta and proliferator-activated receptor gamma expression in adipocytes. Focused gene expression profiling revealed an altered expression of genes involved in adipogenesis, lipid accumulation, and fatty acid beta-oxidation, indicative of altered adipose physiology. Despite reduced physical activity with no modification in food intake, these mutant mice were resistant to obesity and insulin resistance induced by a high-fat diet.CONCLUSIONS-Smad3 is a multifaceted regulator in adipose physiology and the pathogenesis of obesity and type 2 diabetes, suggesting that Smad3 may be a potential target for the treatment of obesity and its associated disorders.
Resumo:
Recent evidence suggests the existence of a hepatoportal vein glucose sensor, whose activation leads to enhanced glucose use in skeletal muscle, heart, and brown adipose tissue. The mechanism leading to this increase in whole body glucose clearance is not known, but previous data suggest that it is insulin independent. Here, we sought to further determine the portal sensor signaling pathway by selectively evaluating its dependence on muscle GLUT4, insulin receptor, and the evolutionarily conserved sensor of metabolic stress, AMP-activated protein kinase (AMPK). We demonstrate that the increase in muscle glucose use was suppressed in mice lacking the expression of GLUT4 in the organ muscle. In contrast, glucose use was stimulated normally in mice with muscle-specific inactivation of the insulin receptor gene, confirming independence from insulin-signaling pathways. Most importantly, the muscle glucose use in response to activation of the hepatoportal vein glucose sensor was completely dependent on the activity of AMPK, because enhanced hexose disposal was prevented by expression of a dominant negative AMPK in muscle. These data demonstrate that the portal sensor induces glucose use and development of hypoglycemia independently of insulin action, but by a mechanism that requires activation of the AMPK and the presence of GLUT4.
Resumo:
This study aimed to quantitatively describe and compare whole-body fat oxidation kinetics in cycling and running using a sinusoidal mathematical model (SIN). Thirteen moderately trained individuals (7 men and 6 women) performed two graded exercise tests, with 3-min stages and 1 km h(-1) (or 20 W) increment, on a treadmill and on a cycle ergometer. Fat oxidation rates were determined using indirect calorimetry and plotted as a function of exercise intensity. The SIN model, which includes three independent variables (dilatation, symmetry and translation) that account for main quantitative characteristics of kinetics, provided a mathematical description of fat oxidation kinetics and allowed for determination of the intensity (Fat(max)) that elicits maximal fat oxidation (MFO). While the mean fat oxidation kinetics in cycling formed a symmetric parabolic curve, the mean kinetics during running was characterized by a greater dilatation (i.e., widening of the curve, P < 0.001) and a rightward asymmetry (i.e., shift of the peak of the curve to higher intensities, P = 0.01). Fat(max) was significantly higher in running compared with cycling (P < 0.001), whereas MFO was not significantly different between modes of exercise (P = 0.36). This study showed that the whole-body fat oxidation kinetics during running was characterized by a greater dilatation and a rightward asymmetry compared with cycling. The greater dilatation may be mainly related to the larger muscle mass involved in running while the rightward asymmetry may be induced by the specific type of muscle contraction.
Resumo:
OBJECTIVE: To investigate the relationships between diet composition, body composition, and macronutrient oxidation at rest in obese and non-obese children. DESIGN: Cross-sectional study on fat intake, adiposity and postabsorptive macronutrients oxidation rates. SUBJECTS: 82 prepubertal (age: 9.1 +/- 1.1 y) children, 30 obese (FM = 32.6 +/- 6.1%) and 52 non-obese (FM = 15.6 +/- 5.1%). MEASUREMENTS: Subcutaneous skinfold thickness for body composition, diet history for energy and nutrient intake, indirect calorimetry for resting metabolic rate (RMR) and RQ measurement. RESULTS: Energy intake (EI) was comparable in obese and non-obese children. Adjusted for RMR by ANCOVA, using RMR as the covariate, EI was significantly lower in obese than in non-obese children indicating either a blunted physical activity or a systematic underestimation of EI. Protein and carbohydrate intakes expressed as a percentage of total energy intake (%EI) were not significantly different in the two groups. Lipid intake (%EI) was slightly but significantly higher in the obese than in the non-obese group either unadjusted or adjusted for RMR by ANCOVA. The postabsorptive RQ was significantly lower in obese than in non-obese children. In the total group, %FM was weakly but significantly correlated to lipid intake (%EI). CONCLUSION: Obese prepubertal children have a higher relative fat intake than non-obese children and their FM is associated with this factor. The lower postabsorptive RQ of obese children may indicate a compensatory mechanism to achieve fat equilibrium by enhanced fat oxidation.
Resumo:
BACKGROUND AND AIMS: little is known regarding the reproducibility of body fat measuring devices; hence, we assessed the between and within-device reproducibility, and the within-day variability of body fat measurements. METHODS: body fat percentage was measured twice on seventeen female students aged between 18 and 20 with a body mass index of 21.9 ± 2.5 kg/m2 (mean ± SD) using seven bipolar bioelectrical impedance devices. Each participant was also measured each hour between 7:00 and 22:00. RESULTS: the correlation between first and second measurements was very high (Spearman r between 0.985 and 1.000, p<0.001), as well as between devices (Spearman r between 0.916 and 0.991, p<0.001). Repeated measurements analysis showed no differences were between devices (p=0.59) or readings (first vs. second: p=0.74). Conversely, significant differences were found between assessment periods throughout the day, measurements made in the morning being lower than those made in the afternoon (F test for repeated values= 6.58, p<0.001). CONCLUSIONS: the between and within-device reproducibility for measuring body fat is high, enabling the use of multiple devices in a single study. Conversely, small but significant changes in body fat measurements occur during the day, urging body fat measurements to be performed at fixed times.
Resumo:
Chronic disorders, such as obesity, diabetes, inflammation, non-alcoholic fatty liver disease and atherosclerosis, are related to alterations in lipid and glucose metabolism, in which peroxisome proliferator-activated receptors (PPAR)α, PPARβ/δ and PPARγ are involved. These receptors form a subgroup of ligand-activated transcription factors that belong to the nuclear hormone receptor family. This review discusses a selection of novel PPAR functions identified during the last few years. The PPARs regulate processes that are essential for the maintenance of pregnancy and embryonic development. Newly found hepatic functions of PPARα are the mediation of female-specific gene repression and the protection of the liver from oestrogen induced toxicity. PPARα also controls lipid catabolism and is the target of hypolipidaemic drugs, whereas PPARγ controls adipocyte differentiation and regulates lipid storage; it is the target for the insulin sensitising thiazolidinediones used to treat type 2 diabetes. Activation of PPARβ/δ increases lipid catabolism in skeletal muscle, the heart and adipose tissue. In addition, PPARβ/δ ligands prevent weight gain and suppress macrophage derived inflammation. In fact, therapeutic benefits of PPAR ligands have been confirmed in inflammatory and autoimmune diseases, such as encephalomyelitis and inflammatory bowel disease. Furthermore, PPARs promote skin wound repair. PPARα favours skin healing during the inflammatory phase that follows injury, whilst PPARβ/δ enhances keratinocyte survival and migration. Due to their collective functions in skin, PPARs represent a major research target for our understanding of many skin diseases. Taken altogether, these functions suggest that PPARs serve as physiological sensors in different stress situations and remain valuable targets for innovative therapies.