229 resultados para acoustic radiation force
Resumo:
Type II topoisomerases (Topo II) are unique enzymes that change the DNA topology by catalyzing the passage of two double-strands across each other by using the energy from ATP hydrolysis. In vitro, human Topo II relaxes positive supercoiled DNA around 10-fold faster than negative supercoiled DNA. By using atomic force microscopy (AFM) we found that human Topo II binds preferentially to DNA cross-overs. Around 50% of the DNA crossings, where Topo II was bound to, presented an angle in the range of 80-90°, suggesting a favored binding geometry in the chiral discrimination by Topo II. Our studies with AFM also helped us visualize the dynamics of the unknotting action of Topo II in knotted molecules.
Resumo:
Recently, atomic force microscope (AFM) manufacturers have begun producing instruments specifically designed to image biological specimens. In most instances, they are integrated with an inverted optical microscope, which permits concurrent optical and AFM imaging. An important component of the set-up is the imaging chamber, whose design determines the nature of the experiments that can be conducted. Many different imaging chamber designs are available, usually designed to optimize a single parameter, such as the dimensions of the substrate or the volume of fluid that can be used throughout the experiment. In this report, we present a universal fluid cell, which simultaneously optimizes all of the parameters that are important for the imaging of biological specimens in the AFM. This novel imaging chamber has been successfully tested using mammalian, plant, and microbial cells.
Resumo:
The shape of the energy spectrum produced by an x-ray tube has a great importance in mammography. Many anode-filtration combinations have been proposed to obtain the most effective spectrum shape for the image quality-dose relationship. On the other hand, third generation synchrotrons such as the European Synchrotron Radiation Facility in Grenoble are able to produce a high flux of monoenergetic radiation. It is thus a powerful tool to study the effect of beam energy on image quality and dose in mammography. An objective method was used to evaluate image quality and dose in mammography with synchrotron radiation and to compare them to standard conventional units. It was performed systematically in the energy range of interest for mammography through the evaluation of a global image quality index and through the measurement of the mean glandular dose. Compared to conventional mammography units, synchrotron radiation shows a great improvement of the image quality-dose relationship, which is due to the beam monochromaticity and to the high intrinsic collimation of the beam, which allows the use of a slit instead of an anti-scatter grid for scatter rejection.
Resumo:
Originally invented for topographic imaging, atomic force microscopy (AFM) has evolved into a multifunctional biological toolkit, enabling to measure structural and functional details of cells and molecules. Its versatility and the large scope of information it can yield make it an invaluable tool in any biologically oriented laboratory, where researchers need to perform characterizations of living samples as well as single molecules in quasi-physiological conditions and with nanoscale resolution. In the last 20 years, AFM has revolutionized the characterization of microbial cells by allowing a better understanding of their cell wall and of the mechanism of action of drugs and by becoming itself a powerful diagnostic tool to study bacteria. Indeed, AFM is much more than a high-resolution microscopy technique. It can reconstruct force maps that can be used to explore the nanomechanical properties of microorganisms and probe at the same time the morphological and mechanical modifications induced by external stimuli. Furthermore it can be used to map chemical species or specific receptors with nanometric resolution directly on the membranes of living organisms. In summary, AFM offers new capabilities and a more in-depth insight in the structure and mechanics of biological specimens with an unrivaled spatial and force resolution. Its application to the study of bacteria is extremely significant since it has already delivered important information on the metabolism of these small microorganisms and, through new and exciting technical developments, will shed more light on the real-time interaction of antimicrobial agents and bacteria.
Resumo:
The success story of hydroelectricity long influenced and dominated Swiss scholarly literature devoted to the history of technology. This means of conducting power, which emerged at the end of the 19th century and is still dominating today, has attracted much more attention than technologies that have been shadowed by its success. In spite of their important contribution to Swiss economic development, the distribution networks of pressurized water have been neglected by scholars. This article contributes to close this historiographic gap by analyzing the introduction of pressurized water distribution in 1876 in Lausanne, in the context of the building of the first Swiss cable funicular between Lausanne and Ouchy. This article shows how pressurized water distribution transformed socio-economic practices in the urban areas in which it was adopted. Indeed, this innovation, which allowed the use of distant hydraulic resources, enabled the rationalization of industrial and artisanal production as well as improved the density of the urban industrial base. By facilitating the introduction of electric lighting, pressurized water networks played a key role in the early development, and further successes, of the Swiss hydroelectric industry.
Resumo:
This is one of the few studies that have explored the value of baseline symptoms and health-related quality of life (HRQOL) in predicting survival in brain cancer patients. Baseline HRQOL scores (from the EORTC QLQ-C30 and the Brain Cancer Module (BN 20)) were examined in 490 newly diagnosed glioblastoma cancer patients for the relationship with overall survival by using Cox proportional hazards regression models. Refined techniques as the bootstrap re-sampling procedure and the computation of C-indexes and R(2)-coefficients were used to try and validate the model. Classical analysis controlled for major clinical prognostic factors selected cognitive functioning (P=0.0001), global health status (P=0.0055) and social functioning (P<0.0001) as statistically significant prognostic factors of survival. However, several issues question the validity of these findings. C-indexes and R(2)-coefficients, which are measures of the predictive ability of the models, did not exhibit major improvements when adding selected or all HRQOL scores to clinical factors. While classical techniques lead to positive results, more refined analyses suggest that baseline HRQOL scores add relatively little to clinical factors to predict survival. These results may have implications for future use of HRQOL as a prognostic factor in cancer patients.
Resumo:
Background Surgery of radiation-induced cataracts in children with retinoblastoma (RB) is a challenge as early intervention is weighted against the need to delay surgery until complete tumour control is obtained. This study analyses the safety and functional results of such surgery. Methods In a retrospective, non-comparative, consecutive case series, we reviewed medical records of RB patients </=14 y of age who underwent either external beam radiotherapy or plaque treatment and were operated for radiation-induced cataract between 1985 and 2008. Results In total, 21 eyes of 20 RB patients were included and 18 out of the 21 eyes had Reese-Ellsworth stage V or ABC classification group D/E RB. Median interval between last treatment for RB and cataract surgery was 21.5 months, range 3-164 months. Phacoaspiration was performed in 13 eyes (61%), extra-capsular cataract extraction in 8 (39%) and intraocular lens implantation in 19 eyes (90%). The majority of cases, 11/21 (52%), underwent posterior capsulorhexis or capsulotomy and 6/21 (28%) an anterior vitrectomy. Postoperative visual acuity was >/=20/200 in 13 eyes and <20/200 in 5 eyes. Intraocular tumour recurrence was noted in three eyes. Mean postoperative follow up was 90 months+/-69 months. Conclusions Modern cataract surgery, including clear cornea approach, lens aspiration with posterior capsulotomy, anterior vitrectomy and IOL implantation is a safe procedure for radiation-induced cataract as long as RB is controlled. The visual prognosis is limited by initial tumour involvement of the macula and by corneal complications of radiotherapy. We recommend a minimal interval of 9 months between completion of treatment of retinoblastoma and cataract surgery.
Resumo:
The oncologic outcome and the total dose are highly correlated with the treatment by ionizing radiation. The dose increase (total or per fraction) may provoke late-side effects that are potentially irreversible. The radiation-induced CD8 lymphocyte apoptotic value and the molecular modifications within the lymphocyte are capable of predicting the level of risk of developing late-side effects after curative intent radiotherapy. In this review, we present the different blood assays in this setting and discuss the current possibilities of researches, namely those involving the proteomic process.
Resumo:
PURPOSE: Since 1982, the Radiation Oncology Group of the EORTC (EORTC ROG) has pursued an extensive Quality Assurance (QA) program involving all centres actively participating in its clinical research. The first step is the evaluation of the structure and of the human, technical and organisational resources of the centres, to assess their ability to comply with the current requirements for high-tech radiotherapy (RT). MATERIALS AND METHODS: A facility questionnaire (FQ) was developed in 1989 and adapted over the years to match the evolution of RT techniques. We report on the contents of the current FQ that was completed online by 98 active EORTC ROG member institutions from 19 countries, between December 2005 and October 2007. RESULTS: Similar to the data collected previously, large variations in equipment, staffing and workload between centres remain. Currently only 15 centres still use a Cobalt unit. All centres perform 3D Conformal RT, 79% of them can perform IMRT and 54% are able to deliver stereotactic RT. An external reference dosimetry audit (ERDA) was performed in 88% of the centres for photons and in 73% for electrons, but it was recent (<2 years) in only 74% and 60%, respectively. CONCLUSION: The use of the FQ helps maintain the minimum quality requirements within the EORTC ROG network: recommendations are made on the basis of the analysis of its results. The present analysis shows that modern RT techniques are widely implemented in the clinic but also that ERDA should be performed more frequently. Repeated assessment using the FQ is warranted to document the future evolution of the EORTC ROG institutions.
Resumo:
BACKGROUND: The evidence base for the diagnosis and management of amyotrophic lateral sclerosis (ALS) is weak. OBJECTIVES: To provide evidence-based or expert recommendations for the diagnosis and management of ALS based on a literature search and the consensus of an expert panel. METHODS: All available medical reference systems were searched, and original papers, meta-analyses, review papers, book chapters and guidelines recommendations were reviewed. The final literature search was performed in February 2011. Recommendations were reached by consensus. RECOMMENDATIONS: Patients with symptoms suggestive of ALS should be assessed as soon as possible by an experienced neurologist. Early diagnosis should be pursued, and investigations, including neurophysiology, performed with a high priority. The patient should be informed of the diagnosis by a consultant with a good knowledge of the patient and the disease. Following diagnosis, the patient and relatives/carers should receive regular support from a multidisciplinary care team. Medication with riluzole should be initiated as early as possible. Control of symptoms such as sialorrhoea, thick mucus, emotional lability, cramps, spasticity and pain should be attempted. Percutaneous endoscopic gastrostomy feeding improves nutrition and quality of life, and gastrostomy tubes should be placed before respiratory insufficiency develops. Non-invasive positive-pressure ventilation also improves survival and quality of life. Maintaining the patient's ability to communicate is essential. During the entire course of the disease, every effort should be made to maintain patient autonomy. Advance directives for palliative end-of-life care should be discussed early with the patient and carers, respecting the patient's social and cultural background.
Resumo:
Summary : Clinical evidence indicates that tumors recurring within previously irradiated fields are highly invasive and metastatic, suggesting a role of the tumor stroma in this effect. Angiogenesis plays a critical role in tumor progression. Ionizing radiation is known to induce apoptosis of angiogenic endothelial cells, while the effect on quiescent endothelial cells and de novo angiogenesis is not well characterized. We recently observed that irradiation of normal tissue prevents tumor- and growth factor-induced angiogenesis. The main aim of my thesis work was to characterize the mechanisms of radiation-mediated inhibition of angiogenesis. To this purpose we used a combination of in vivo and ex vivo studies on irradiated healthy tissue, and in vitro irradiation experiments using angiogenesis models and isolated endothelial cells. We found that irradiation did not induce endothelial cell apoptosis and did not disrupt quiescent vessels within irradiated skin. Radiation reduced the recruitment of leukocytes to angiogenic Matrigel plugs, but this effect was rather secondary to decreased angiogenesis, as exogenous addition of leucocytes to Matrigel plugs did not rescue the angiogenesis defects. To ascertain the direct effect of radiation on endothelial cells, we used the mouse aortic ring assay to test the sprouting capacity of irradiated endothelial cells ex vivo and in vitro, and found that irradiation completely suppressed endothelial cell sprouting. Using HUVEC cells, we showed that irradiation of quiescent confluent endothelial cells did not induce cell death but suppressed subsequent migration and cell proliferation and induced senescence. By Western blotting, we observed a rapid and sustained increase in p21 levels, previously shown to be activated by p53 in response to double strand break, and mediating senescence in human cells. Current experiments focus on the mechanism of sustained p21 upregulation and its role in reduced migration. Inhibition of endothelial cell migration and proliferation by radiation may explain reduced angiogenesis in tumors growing in previously irradiated fields.