49 resultados para Work-based learning : prospects and challenges


Relevância:

100.00% 100.00%

Publicador:

Resumo:

River restoration can enhance river dynamics, environmental heterogeneity and biodiversity, but the underlying processes governing the dynamic changes need to be understood to ensure that restoration projects meet their goals, and adverse effects are prevented. In particular, we need to comprehend how hydromorphological variability quantitatively relates to ecosystem functioning and services, biodiversity as well as ground-and surface water quality in restored river corridors. This involves (i) physical processes and structural properties, determining erosion and sedimentation, as well as solute and heat transport behavior in surface water and within the subsurface; (ii) biogeochemical processes and characteristics, including the turnover of nutrients and natural water constituents; and (iii) ecological processes and indicators related to biodiversity and ecological functioning. All these aspects are interlinked, requiring an interdisciplinary investigation approach. Here, we present an overview of the recently completed RECORD (REstored CORridor Dynamics) project in which we combined physical, chemical, and biological observations with modeling at a restored river corridor of the perialpine Thur River in Switzerland. Our results show that river restoration, beyond inducing morphologic changes that reshape the river bed and banks, triggered complex spatial patterns of bank infiltration, and affected habitat type, biotic communities and biogeochemical processes. We adopted an interdisciplinary approach of monitoring the continuing changes due to restoration measures to address the following questions: How stable is the morphological variability established by restoration? Does morphological variability guarantee an improvement in biodiversity? How does morphological variability affect biogeochemical transformations in the river corridor? What are some potential adverse effects of river restoration? How is river restoration influenced by catchment-scale hydraulics [GRAPHICS] and which feedbacks exist on the large scale? Beyond summarizing the major results of individual studies within the project, we show that these overarching questions could only be addressed in an interdisciplinary framework.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: High interindividual variability in plasma concentrations of risperidone and its active metabolite, 9-hydroxyrisperidone, may lead to suboptimal drug concentration. OBJECTIVE: Using a population pharmacokinetic approach, we aimed to characterize the genetic and non-genetic sources of variability affecting risperidone and 9-hydroxyrisperidone pharmacokinetics, and relate them to common side effects. METHODS: Overall, 150 psychiatric patients (178 observations) treated with risperidone were genotyped for common polymorphisms in NR1/2, POR, PPARα, ABCB1, CYP2D6 and CYP3A genes. Plasma risperidone and 9-hydroxyrisperidone were measured, and clinical data and common clinical chemistry parameters were collected. Drug and metabolite concentrations were analyzed using non-linear mixed effect modeling (NONMEM(®)). Correlations between trough concentrations of the active moiety (risperidone plus 9-hydroxyrisperidone) and common side effects were assessed using logistic regression and linear mixed modeling. RESULTS: The cytochrome P450 (CYP) 2D6 phenotype explained 52 % of interindividual variability in risperidone pharmacokinetics. The area under the concentration-time curve (AUC) of the active moiety was found to be 28 % higher in CYP2D6 poor metabolizers compared with intermediate, extensive and ultrarapid metabolizers. No other genetic markers were found to significantly affect risperidone concentrations. 9-hydroxyrisperidone elimination was decreased by 26 % with doubling of age. A correlation between trough predicted concentration of the active moiety and neurologic symptoms was found (p = 0.03), suggesting that a concentration >40 ng/mL should be targeted only in cases of insufficient, or absence of, response. CONCLUSIONS: Genetic polymorphisms of CYP2D6 play an important role in risperidone, 9-hydroxyrisperidone and active moiety plasma concentration variability, which were associated with common side effects. These results highlight the importance of a personalized dosage adjustment during risperidone treatment.