331 resultados para Veterinary cell therapy
Resumo:
PURPOSE: Abdominal aortic aneurysms (AAAs) expand because of aortic wall destruction. Enrichment in Vascular Smooth Muscle Cells (VSMCs) stabilizes expanding AAAs in rats. Mesenchymal Stem Cells (MSCs) can differentiate into VSMCs. We have tested the hypothesis that bone marrow-derived MSCs (BM-MSCs) stabilizes AAAs in a rat model. MATERIAL AND METHODS: Rat Fischer 344 BM-MSCs were isolated by plastic adhesion and seeded endovascularly in experimental AAAs using xenograft obtained from guinea pig. Culture medium without cells was used as control group. The main criteria was the variation of the aortic diameter at one week and four weeks. We evaluated the impact of cells seeding on inflammatory response by immunohistochemistry combined with RT-PCR on MMP9 and TIMP1 at one week. We evaluated the healing process by immunohistochemistry at 4 weeks. RESULTS: The endovascular seeding of BM-MSCs decreased AAA diameter expansion more powerfully than VSMCs or culture medium infusion (6.5% ± 9.7, 25.5% ± 17.2 and 53.4% ± 14.4; p = .007, respectively). This result was sustained at 4 weeks. BM-MSCs decreased expression of MMP-9 and infiltration by macrophages (4.7 ± 2.3 vs. 14.6 ± 6.4 mm(2) respectively; p = .015), increased Tissue Inhibitor Metallo Proteinase-1 (TIMP-1), compared to culture medium infusion. BM-MSCs induced formation of a neo-aortic tissue rich in SM-alpha active positive cells (22.2 ± 2.7 vs. 115.6 ± 30.4 cells/surface units, p = .007) surrounded by a dense collagen and elastin network covered by luminal endothelial cells. CONCLUSIONS: We have shown in this rat model of AAA that BM-MSCs exert a specialized function in arterial regeneration that transcends that of mature mesenchymal cells. Our observation identifies a population of cells easy to isolate and to expand for therapeutic interventions based on catheter-driven cell therapy.
Resumo:
The therapeutic potential of adult stem cells may become a relevant option in clinical care in the future. In hand and plastic surgery, cell therapy might be used to enhance nerve regeneration and help surgeons and clinicians to repair debilitating nerve injuries. Adipose-derived stem cells (ASCs) are found in abundant quantities and can be harvested with a low morbidity. In order to define the optimal fat harvest location and detect any potential differences in ASC proliferation properties, we compared biopsies from different anatomical sites (inguinal, flank, pericardiac, omentum, neck) in Sprague-Dawley rats. ASCs were expanded from each biopsy and a proliferation assay using different mitogenic factors, basic fibroblast growth factor (bFGF) and platelet-derived growth factor (PDGF) was performed. Our results show that when compared with the pericardiac region, cells isolated from the inguinal, flank, omental and neck regions grow significantly better in growth medium alone. bFGF significantly enhanced the growth rate of ASCs isolated from all regions except the omentum. PDGF had minimal effect on ASC proliferation rate but increases the growth of ASCs from the neck region. Analysis of all the data suggests that ASCs from the neck region may be the ideal stem cell sources for tissue engineering approaches for the regeneration of nervous tissue.
Resumo:
The demonstration of beneficial effects of cell therapy despite the persistence of only few transplanted cells in vivo suggests secreted factors may be the active component of this treatment. This so-called paracrine hypothesis is supported by observations that culture media conditioned by progenitor cells contain growth factors that mediate proangiogenic and cytoprotective effects. Cardiac progenitor cells in semi-suspension culture form spherical clusters (cardiospheres) that deliver paracrine signals to neighboring cells. A key component of paracrine secretion is exosomes, membrane vesicles that are stored intracellularly in endosomal compartments and are secreted when these structures fuse with the cell plasma membrane. Exosomes have been identified as the active component of proangiogenic effects of bone marrow CD34(+) stem cells in mice and the regenerative effects of embryonic mesenchymal stem cells in infarcted hearts in pigs and mice. Here, we provide electron microscopic evidence of exosome secretion by progenitor cells in mouse myocardium and human cardiospheres. Exosomes are emerging as an attractive vector of paracrine signals delivered by progenitor cells. They can be stored as an "off-the-shelf" product. As such, exosomes have the potential for circumventing many of the limitations of viable cells for therapeutic applications in regenerative medicine.
Resumo:
Cell therapy for nucleus pulposus (NP) regeneration is an attractive treatment for early disc degeneration as shown by studies using autologous NP cells or stem cells. Another potential source of cells is foetal cells. We investigated the feasibility of isolating foetal cells from human foetal spine tissues and assessed their chondrogenic potential in alginate bead cultures. Histology and immunohistochemistry of foetal tissues showed that the structure and the matrix composition (aggrecan, type I and II collagen) of foetal intervertebral disc (IVD) were similar to adult IVD. Isolated foetal cells were cultured in monolayer in basic media supplemented with 10% Fetal Bovine Serum (FBS) and from each foetal tissue donation, a cell bank of foetal spine cells at passage 2 was established and was composed of around 2000 vials of 5 million cells. Gene expression and immunohistochemistry of foetal spine cells cultured in alginate beads during 28 days showed that cells were able to produce aggrecan and type II collagen and very low level of type I and type X collagen, indicating chondrogenic differentiation. However variability in matrix synthesis was observed between donors. In conclusion, foetal cells could be isolated from human foetal spine tissues and since these cells showed chondrogenic potential, they could be a potential cell source for IVD regeneration.
Novel insulated gamma and lentis retroviral vectors towards safer genetic modification of stem cells
Resumo:
In otherwise successful gene therapy trials insertional mutagenesis has resulted in leukemia. The identification of new short synthetic genetic insulator elements (GIE) which would both prevent such activation effects and shield the transgene from silencing, is a main challenge. Previous attempts with e.g. b-globin HS4, have met with poor efficacy and genetic instability. We have investigated potential improvement with two new candidate synthetic GIEs in SIN-gamma and lentiviral vectors. With each constructs two internal promoters have been tested: either the strong Fr- MuLV-U3 or the housekeeping hPGK.We could identify a specific combination of insulator 2 repeats which translates into best functional activity, high titers and boundary effect in both gammaretro and lentivectors. In target cells a dramatic shift of expression is observed with an homogenous profile the level of which strictly depends on the promoter strength. These data remain stable in both HeLa cells over three months and cord blood HSCs for two months, irrespective of the multiplicity of infection (MOI). In comparison, control native and SIN vectors expression levels show heterogeneous, depend on the MOI and prove unstable. We have undertaken genotoxicity assessment in comparing integration patterns ingenuity in human target cells sampled over three months using high-throughput pyro-sequencing. Data will be presented. Further genotoxicity assessment will include in vivo studies. We have established insulated vectors which harbour both boundary and enhancer-blocking effect and show stable in prolonged in vitro culture conditions. Work performed with support of EC-DG research FP6-NoE, CLINIGENE: LSHB-CT-2006-018933
Resumo:
The avidity of the T-cell receptor (TCR) for antigenic peptides presented by the peptide-MHC (pMHC) on cells is a key parameter for cell-mediated immunity. Yet a fundamental feature of most tumor antigen-specific CD8(+) T cells is that this avidity is low. In this study, we addressed the need to identify and select tumor-specific CD8(+) T cells of highest avidity, which are of the greatest interest for adoptive cell therapy in patients with cancer. To identify these rare cells, we developed a peptide-MHC multimer technology, which uses reversible Ni(2+)-nitrilotriacetic acid histidine tags (NTAmers). NTAmers are highly stable but upon imidazole addition, they decay rapidly to pMHC monomers, allowing flow-cytometric-based measurements of monomeric TCR-pMHC dissociation rates of living CD8(+) T cells on a wide avidity spectrum. We documented strong correlations between NTAmer kinetic results and those obtained by surface plasmon resonance. Using NTAmers that were deficient for CD8 binding to pMHC, we found that CD8 itself stabilized the TCR-pMHC complex, prolonging the dissociation half-life several fold. Notably, our NTAmer technology accurately predicted the function of large panels of tumor-specific T cells that were isolated prospectively from patients with cancer. Overall, our results demonstrated that NTAmers are effective tools to isolate rare high-avidity cytotoxic T cells from patients for use in adoptive therapies for cancer treatment.
Resumo:
Notre système immunitaire joue un rôle important pour la protection envers les maladies infectieuses. Au cours d'une réponse à une infection primaire, des cellules B et des cellules T spécifiques, dirigées contre le pathogène en question, sont générées et certaines d'entre elles deviennent des cellules dites mémoires. Leur fonction est de nous protéger contre une nouvelle infection avec le même pathogène, une infection secondaire. Dans certaines situations, comme c'est par exemple le cas avec la grippe, les pathogènes ne sont pas toujours complètement identiques et les cellules mémoires ne sont pas à même d'assurer leur rôle protecteur et d'empêcher une réinfection. Pourtant, on ne sait à l'heure actuelle que très peu comment une immunité acquise, mais non protectrice, influence le développement d'une réponse immunitaire ultérieure. Dans la première partie de cette thèse, nous avons étudié comment les cellules T mémoires cytotoxiques altèrent la réponse de cellules T cytotoxiques nouvellement induites. Au cours d'une réaction immunitaire dirigée contre une infection primaire, un vaste répertoire de lymphocytes T est créé, constitué de cellules T possédant divers degrés d'affinité pour le pathogène. Lors d'une infection secondaire, seules les cellules T ayant une forte affinité pour le pathogène participent à la réponse. Nous avons pu démontrer que ce phénomène de restriction du répertoire des cellules T est principalement causé par les cellules T mémoires qui sont à même de reconnaître un antigène pathogénique présent dans les deux infections. Dans un deuxième projet, nous avons étudié comment l'absence de PTPN2 influence la réponse des cellules T. Chez l'homme, une mutation dans le gène de PTPN2 est associée à des maladies auto-immunes et résulte en une activité réduite de cette phosphatase dans les lymphocytes T. Nous avons montré que la baisse d'activité de la phosphatase PTNP2 conduit à une meilleure expansion des cellules T ayant une qualité comparable à des cellules T auto-antigène spécifiques. De plus, nous avons observé que la survie de ces cellules T effectues ayant une phosphatase diminuée est nettement améliorée. Cela peut conduire à une réponse immunitaire plus efficace ou, éventuellement, à une pathologie auto-immune plus grave. En outre, nos résultats montrent qu'en manipulant l'activité de cette phosphatase, il est possible d'augmenter l'efficacité du transfert des cellules T dans un hôte receveur. Un tel transfert de cellules T est pratiqué chez des patients atteints de tumeurs. Nos travaux suggèrent que la manipulation de la phosphatase PTPN2 pourrait donc représenter une approche thérapeutique novatrice et prometteuse. -- Notre système immunitaire joue un rôle important pour la protection contre les maladies. Les cellules T CD8+ ont une importance primordiale pour le contrôle d'infections primaires causées par des virus ou bactéries, mais également contre certaines tumeurs. Par conséquent, mieux comprendre les exigences nécessaires à l'induction de bonnes réponses des cellules T CD8 pourrait nous permettre de construire des vaccins contre les pathogènes contre lesquels nous n'avons pour l'instant pas de vaccins mais aussi d'améliorer les réactions immunitaires dirigées anti-tumorales. Dans la première partie de cette thèse, nous avons étudié l'influence qu'une immunité préexistante a sur la réponse des cellules T CD8. Nous sommes souvent exposés à des pathogènes qui sont similaires mais pas identiques à ceux que nous avons rencontrés auparavant. De telles infections hétérologues ne sont pas l'objet de beaucoup d'études et certains exemples indiquent même qu'une immunité préexistante partielle peut mener à une aggravation de la maladie. Nous avons étudié le répertoire des lymphocytes T CD8 qui sont générés lors d'une rencontre avec un nouvel antigène, et ce en comparant infection primaire et secondaire. En utilisant le modèle expérimental d'infections à Listeria monocytogenes, nous avons pu montrer que lors d'une infection primaire, un répertoire diversifié comprenant des cellules T CD8 de forte et faible affinité est constitué. Au contraire, dans le cas d'une infection secondaire, le répertoire des cellules T est fortement limité et seulement les lymphocytes T de forte affinité sont impliqués dans la réponse immunitaire. Nous avons pu démontrer que ces Rangements sont provoqués par des cellules T CD8 mémoires capables de reconnaître un antigène présent dans les deux infections. Cette augmentation du seuil d'activation des cellules effectrices est majoritairement causée par les lymphocytes T CD8 mémoires non transférables. Ces observations indiquent que les vaccins visant à induire des cellules T anti-tumorales de faible affinité seraient inefficaces si le vaccin contient des épitopes contre lesquels il existe une mémoire immunologique. Les réponses immunitaires conduites par les cellules T contre les antigènes tumoraux dépendent des cellules T CD8 de faible réactivité contre les antigènes tumoraux puisque les cellules à forte réactivité sont éliminées par les mécanismes de tolérance. Nous basant sur l'existence dans la littérature de preuves indiquant que PTPN2 influence la réponse des cellules T de faible affinité, nous nous sommes intéressés à comprendre comment PTPN2 impacte les réponses des cellules T CD8 en général. Nous avons remarqué que des cellules T CD8 déficientes en PTPN2 exhibent une meilleure capacité à proliférer suite à une faible ou courte stimulation du récepteur des lymphocytes T. La phase effectrice est prolongée et la contraction retardée résultant ainsi à globalement plus de cellules effectrices. Ce phénomène est également accompagné d'une meilleure survie des cellules effectrices de différentiation terminale. Une fois transférées dans un nouvel hôte receveur, les cellules effectrices terminales KLRG1+CD127- déficientes en phosphatase PTPN2 peuvent survivre et se transformer en cellules mémoires CD127+ fonctionnelles. De façon inattendue, nous avons découvert que l'élimination de PTPN2 améliore l'efficacité du transfert et la formation des cellules mémoires ainsi que leur capacité protectrice. Manipuler l'activité de cette phosphatase apparaît donc comme une approche intéressante et prometteuse pour la thérapie cellulaire par transfert adoptif de lymphocytes T. Nos observations montrent que la manipulation d'un facteur intrinsèque, l'absence de PTPN2, peut, dans certaines circonstances, améliorer la réponse des cellules T. Une meilleure connaissance des mécanismes contrôlant la réponse des lymphocytes T CD8 pourrait donc permettre la manipulation de ces derniers et conduire à des réponses immunitaires plus vigoureuses. Si ces réponses sont déclenchées par l'utilisation de vaccins, il est nécessaire de considérer l'historique d'une exposition préalable à des agents pathogènes ou à des vaccins puisque celle-ci peut, comme nous l'avons démontré, influencer le répertoire des cellules T recrutées dans la réponse immunitaire et, par conséquent, modifier l'aptitude de notre système immunitaire à faire face à une infection. -- Our immune system plays an important role in the protection from disease. CD8 T cells are critical for the control of primary infections with most viruses and certain bacteria as well as against some tumors. Therefore, better knowledge of CD8 T cell responses might enable us to generate vaccines against pathogens for which currently no vaccines are available or to improve anti-tumor immune responses. In the first part of this thesis we addressed the issue how previously acquired immunity impacts on the response of CD8 T cells. We are often exposed to pathogens that are related but not identical to the previously encountered ones. Such heterologous infections are not well studied and there are some indications that partial pre-existing immunity may in some cases even lead to an enhancement of disease. We specifically studied the T cell repertoire of CD8 T cells that are responding to a newly encountered antigen in secondary compared to primary infections. Using the experimental model of Listeria monocytogenes infections, we showed that in primary infections a wide repertoire including high and low affinity CD8 T cells is recruited into the immune response. In contrast to this, in secondary infections, the T cell repertoire is severely restricted and only T cells of high affinity are responding. We were able to pinpoint this difference to the presence of memory CD8 T cells that recognize an antigen that is shared between the two subsequent infections. This increase in the activation threshold was most effectively mediated via non-transferable memory CD8 T cells. This would argue that vaccines targeting low affinity tumor-specific T cells would fail if the vaccine contains previously encountered CD8 T cell epitopes. T cell mediated immune responses to tumor antigen rely often on T cells which weakly react to tumor antigen as high affinity T cells are eliminated by tolerance mechanisms. Following indication in the literature that PTPN2 impacts on the response of such weakly antigen-reactive T cells, we investigated how PTPN2 impacts in general the response of CD8 T cells. We observed that CD8 T cells lacking PTPN2 show an enhanced expansion following weak or short-term T cell receptor stimulation. The effector phase is prolonged and contraction delayed thus resulting in overall more effector cells. This is accompanied by a better survival of terminal effector cells. When transferred into new recipients, KLRG1+CD127- terminal effector cells lacking PTPN2 can survive and convert into CD127+ functional memory cells. Surprisingly, we discovered that elimination of PTPN2 enhances the transfer efficacy and formation of memory cells as well as the protective capacity. Targeting PTPN2 might thus be a promising approach for adoptive T cell therapy. Our observations show how the manipulation of an intrinsic factor, the absence of PTPN2, can enhance T cell responses under certain circumstances. A better understanding of underlying mechanisms for the control of CDS T cell responses might enable the manipulation of these and allow for more powerful responses. If these responses are induced through vaccines it is imperative that the previous history of exposure to pathogens or vaccines is considered as it can, as we have shown in this thesis, influence the recruited T cell repertoire and thus possibly the ability to handle the infection.
Resumo:
Objective: To demonstrate the incidence, time course, predisposing factor and reversibility of neurotoxicity in children with brain tumors treated with high dose busulfan-thiotepa with autologous stem cell transplantation (ASCT) and radiation therapy in our institutional experience.Materials and Methods: We performed a retrospective analysis of prospectively collected data. Between May 1988 and May 2007, 110 patients, median age 3.6 years (range, 1 months-15.3 years), with brain tumors were treated with surgical intervention and conventional chemotherapy. All patients received one course of high-dose busulfan-thiotepa with stem cell rescue, followed or preceded by radiotherapy.Results: Twenty-three patients (21%) developed neuroradiological abnormalities on follow-up imaging studies at a median time of 9.2 months (range, 5.6-17.3 months) after day 0 of ASCT. All MRI-lesions appeared in patients receiving radiotherapy after ASCT and were localized inside the 50-55 Gy isodoses. They disappeared in 14 of 23 patients with a median time of 8 months (range, 3-17 months). The presence of MRI-abnormalities was a favorable prognostic factor for overall survival on univariate analysis (hazard ratio: 0.12, 95% confidence interval [0.04, 0.33]), with a 5-year overall survival in patients with MRI-abnormalities of 84% (95% CI, 62-94), comparedto 27% (95% CI, 19-37) in those without lesions. On multivariate analysis, the presence of MRI-abnormalities was an independent prognostic factor for overall survival.Conclusion: MRI-detectable brain abnormalities are common early findings in children treated with high-dose busulfan-thiotepa followed by radiation therapy, and may mimic early tumor recurrence. They are correlated with a better outcome.
Resumo:
OBJECTIVE: To evaluate the antitumor activity and safety profile of plitidepsin administered as a 1h weekly intravenous (i.v.) infusion of 3.2mg/m(2) to patients with small cell lung cancer (SCLC) who relapsed or progressed after one line of chemotherapy. PATIENTS AND METHODS: This was a multicenter, open-label, single-arm, exploratory, phase II clinical trial. Treatment lasted until disease progression, unacceptable toxicity, patient refusal or treatment delay for >2 weeks. Objective response rate (primary efficacy endpoint) was evaluated according to response evaluation criteria in solid tumors (RECIST). The rate of stable disease (SD) lasting for at least 6 months and time-to-event variables were secondary endpoints of efficacy. Toxicity was assessed using National Cancer Institute Common Toxicity Criteria (NCI-CTC) version 2.0. RESULTS: Twenty pretreated SCLC patients (median age, 60 years) with extensive (n=13) or limited-stage disease (n=7) received a total of 24 treatment cycles (median, one cycle per patient; range, 1-2). Objective tumor responses were not observed and only one of the 17 evaluable patients had SD. With a median follow-up of 11.8 months, the progression-free survival and the median overall survival were 1.3 months and 4.8 months, respectively. The most troubling or common toxicities were fatigue, muscle weakness, lymphopenia, anemia (no patients showed neutropenia), and asymptomatic, non-cumulative increase of transaminases levels and alkaline phosphatase. CONCLUSION: This clinical trial shows that a cycle of 1h weekly i.v. infusion of plitidepsin (3.2mg/m(2)) was generally well tolerated other than fatigue and muscle weakness in patients with pretreated SCLC. One patient died due to multi-organ failure. The absence of antitumor activity found here precludes further studies of this plitidepsin schedule as second-line single-agent treatment of SCLC.
Resumo:
Background: Early initiation of antiretroviral therapy (ART) may dramatically curtail cumulative immunological damage allowing maximal levels of immune preservation/reconstitution and induce an immunovirological status similar to that of HIV-1 LTNPs with low viral reservoirs and polyfunctional HIV-1 specific T cell responses.Methods: We performed a cross-sectional study of an HIV-1 seroconverter cohort on long-term ART (LTTS) and compared it to one of LTNPs. Inclusion criteria for 20 LTTS were: (a) ?4 years ART; (b) long-term aviremia and (c) absence of treatment failure and for 15 LTNPs: (a) ?7 years of documented HIV-1 infection; (b) <1000 HIV-1 RNA copies/mL and ?500 CD4+ T-cells/mm3 in >90% of measurements; (d) absence of AIDS-defining conditions; (e) ART-naı¨ve except for temporary ART for prevention of MTCT. In both cohorts, we analysed residual viral replication and reservoirs in peripheral blood, as measured by cellassociated HIV-1 RNA and DNA in PBMCs, respectively and used polychromatic flow cytometry to analyse HIV-1-specific CD4+ and CD8+ T-cell functional profile in terms of cytokine production using IFN-c, IL-2, TNF-a production.Results: Cell-associated DNA [47.7 (4.8-583.2) in LTTS and 19.7 (0.5-295.5) in LTNPS, p=0.10], and RNA [3.9 (0-36) and 5.8 (0-10.3), respectively] were shown to be similarly low in both cohorts. We identified 103 CD8 T cell epitope-specific responses, all subjects responding to ?1 epitope. Mean responding number of responding epitopes per patient was 2 and 4 in LTTS and LTNPS, respectively. Mean% of cytokine-secreting CD8 T cells was 0.37% and 0.50% (p=0.06), of these 43% and 39% (p=0.12) were secreting simultaneously IFN-c, IL-2 and TNF-a. Respective values for CD4 T cells were 0.28% and 0.33% (p=0.28) of which 33% and 30% (0.32) were secreting these 3 cytokines simultaneously.Conclusions: Long-term aviremia after very early ART initiation is associated with low levels of reservoirs saturation ad residual replication. Although less broad CD8 T cell responses were found in LTTS, HIV-1 specific CD4 and CD8 T cell responses showed similar magnitude and functional profile in the 2 cohorts. Our results indicate that prolonged ART initiated at the time of HIV-1 seroconversion is associated with immuno-virological features which resemble those of LTNPs. (BHIVA Research Award Winner 2008: Anna Garcia-Diaz.)
Resumo:
BACKGROUND: In recent years, treatment options for human immunodeficiency virus type 1 (HIV-1) infection have changed from nonboosted protease inhibitors (PIs) to nonnucleoside reverse-transcriptase inhibitors (NNRTIs) and boosted PI-based antiretroviral drug regimens, but the impact on immunological recovery remains uncertain. METHODS: During January 1996 through December 2004 [corrected] all patients in the Swiss HIV Cohort were included if they received the first combination antiretroviral therapy (cART) and had known baseline CD4(+) T cell counts and HIV-1 RNA values (n = 3293). For follow-up, we used the Swiss HIV Cohort Study database update of May 2007 [corrected] The mean (+/-SD) duration of follow-up was 26.8 +/- 20.5 months. The follow-up time was limited to the duration of the first cART. CD4(+) T cell recovery was analyzed in 3 different treatment groups: nonboosted PI, NNRTI, or boosted PI. The end point was the absolute increase of CD4(+) T cell count in the 3 treatment groups after the initiation of cART. RESULTS: Two thousand five hundred ninety individuals (78.7%) initiated a nonboosted-PI regimen, 452 (13.7%) initiated an NNRTI regimen, and 251 (7.6%) initiated a boosted-PI regimen. Absolute CD4(+) T cell count increases at 48 months were as follows: in the nonboosted-PI group, from 210 to 520 cells/muL; in the NNRTI group, from 220 to 475 cells/muL; and in the boosted-PI group, from 168 to 511 cells/muL. In a multivariate analysis, the treatment group did not affect the response of CD4(+) T cells; however, increased age, pretreatment with nucleoside reverse-transcriptase inhibitors, serological tests positive for hepatitis C virus, Centers for Disease Control and Prevention stage C infection, lower baseline CD4(+) T cell count, and lower baseline HIV-1 RNA level were risk factors for smaller increases in CD4(+) T cell count. CONCLUSION: CD4(+) T cell recovery was similar in patients receiving nonboosted PI-, NNRTI-, and boosted PI-based cART.
Resumo:
Background: Intervention with antiretroviral treatment (ART) and control of viral replication at the time of HIV-1 seroconversion may curtail cumulative immunological damage. We have therefore hypothesized that ART maintenance over a very prolonged period in HIV-1 seroconverters could induce an immuno-virological status similar to that of HIV-1 long-term non-progressors (LTNPs).Methodology/Principal Findings: We have investigated a cohort of 20 HIV-1 seroconverters on long-term ART (LTTS) and compared it to one of 15 LTNPs. Residual viral replication and reservoirs in peripheral blood, as measured by cell-associated HIV-1 RNA and DNA, respectively, were demonstrated to be similarly low in both cohorts. These two virologically matched cohorts were then comprehensively analysed by polychromatic flow cytometry for HIV-1-specific CD4(+) and CD8(+) T-cell functional profile in terms of cytokine production and cytotoxic capacity using IFN-gamma, IL-2, TNF-alpha production and perforin expression, respectively. Comparable levels of highly polyfunctional HIV-1-specific CD4(+) and CD8(+) T-cells were found in LTTS and LTNPs, with low perforin expression on HIV-1-specific CD8+ T-cells, consistent with a polyfunctional/non-cytotoxic profile in a context of low viral burden.Conclusions: Our results indicate that prolonged ART initiated at the time of HIV-1 seroconversion is associated with immuno-virological features which resemble those of LTNPs, strengthening the recent emphasis on the positive impact of early treatment initiation and paving the way for further interventions to promote virological control after treatment interruption.
Resumo:
O. Lebeau, C. Van Delden, J. Garbino, J. Robert, F. Lamoth, J. Passweg, Y. Chalandon. Disseminated Rhizopus microsporus infection cured by salvage allogeneic hematopoietic stem cell transplantation, antifungal combination therapy, and surgical resection. Transpl Infect Dis 2010. All rights reserved Abstract: Invasive Zygomycetes infection complicating prolonged neutropenia is associated with high mortality in the absence of immune recovery. We report a patient who developed disseminated zygomycosis due to Rhizopus microsporus during induction chemotherapy for acute myeloid leukemia. Rescue allogeneic hematopoietic stem cell transplantation (allo-HSCT) was performed as her only chance of cure of this infection and to treat refractory leukemia. Posaconazole combined with liposomal amphotericin B contained the zygomycosis during prolonged neutropenia due to allo-HSCT followed by intense immunosuppression for grade IV acute graft-versus-host disease. Surgical removal of all infected sites after immune recovery, with prolonged posaconazole treatment, ultimately cured the infection. New combination antifungal therapies might sufficiently control disseminated zygomycosis to allow allo-HSCT to be performed, assuring life-saving immune recovery. Surgery appears to be necessary for definite cure of these infections.