69 resultados para Verbal and spatial processes
Resumo:
Functional magnetic resonance imaging studies have indicated that efficient feature search (FS) and inefficient conjunction search (CS) activate partially distinct frontoparietal cortical networks. However, it remains a matter of debate whether the differences in these networks reflect differences in the early processing during FS and CS. In addition, the relationship between the differences in the networks and spatial shifts of attention also remains unknown. We examined these issues by applying a spatio-temporal analysis method to high-resolution visual event-related potentials (ERPs) and investigated how spatio-temporal activation patterns differ for FS and CS tasks. Within the first 450 msec after stimulus onset, scalp potential distributions (ERP maps) revealed 7 different electric field configurations for each search task. Configuration changes occurred simultaneously in the two tasks, suggesting that contributing processes were not significantly delayed in one task compared to the other. Despite this high spatial and temporal correlation, two ERP maps (120-190 and 250-300 msec) differed between the FS and CS. Lateralized distributions were observed only in the ERP map at 250-300 msec for the FS. This distribution corresponds to that previously described as the N2pc component (a negativity in the time range of the N2 complex over posterior electrodes of the hemisphere contralateral to the target hemifield), which has been associated with the focusing of attention onto potential target items in the search display. Thus, our results indicate that the cortical networks involved in feature and conjunction searching partially differ as early as 120 msec after stimulus onset and that the differences between the networks employed during the early stages of FS and CS are not necessarily caused by spatial attention shifts.
Evolutionary history and its relevance in understanding and conserving southern African biodiversity
Resumo:
Abstract : Understanding how biodiversity is distributed is central to any conservation effort and has traditionally been based on niche modeling and the causal relationship between spatial distribution of organisms and their environment. More recently, the study of species' evolutionary history and relatedness has permeated the fields of ecology and conservation and, coupled with spatial predictions, provides useful insights to the origin of current biodiversity patterns, community structuring and potential vulnerability to extinction. This thesis explores several key ecological questions by combining the fields of niche modeling and phylogenetics and using important components of southern African biodiversity. The aims of this thesis are to provide comparisons of biodiversity measures, to assess how climate change will affect evolutionary history loss, to ask whether there is a clear link between evolutionary history and morphology and to investigate the potential role of relatedness in macro-climatic niche structuring. The first part of my thesis provides a fine scale comparison and spatial overlap quantification of species richness and phylogenetic diversity predictions for one of the most diverse plant families in the Cape Floristic Region (CFR), the Proteaceae. In several of the measures used, patterns do not match sufficiently to argue that species relatedness information is implicit in species richness patterns. The second part of my thesis predicts how climate change may affect threat and potential extinction of southern African animal and plant taxa. I compare present and future niche models to assess whether predicted species extinction will result in higher or lower V phylogenetic diversity survival than what would be experienced under random extinction processes. l find that predicted extinction will result in lower phylogenetic diversity survival but that this non-random pattern will be detected only after a substantial proportion of the taxa in each group has been lost. The third part of my thesis explores the relationship between phylogenetic and morphological distance in southern African bats to assess whether long evolutionary histories correspond to equally high levels of morphological variation, as predicted by a neutral model of character evolution. I find no such evidence; on the contrary weak negative trends are detected for this group, as well as in simulations of both neutral and convergent character evolution. Finally, I ask whether spatial and climatic niche occupancy in southern African bats is influenced by evolutionary history or not. I relate divergence time between species pairs to climatic niche and range overlap and find no evidence for clear phylogenetic structuring. I argue that this may be due to particularly high levels of micro-niche partitioning. Résumé : Comprendre la distribution de la biodiversité représente un enjeu majeur pour la conservation de la nature. Les analyses se basent le plus souvent sur la modélisation de la niche écologique à travers l'étude des relations causales entre la distribution spatiale des organismes et leur environnement. Depuis peu, l'étude de l'histoire évolutive des organismes est également utilisée dans les domaines de l'écologie et de la conservation. En combinaison avec la modélisation de la distribution spatiale des organismes, cette nouvelle approche fournit des informations pertinentes pour mieux comprendre l'origine des patterns de biodiversité actuels, de la structuration des communautés et des risques potentiels d'extinction. Cette thèse explore plusieurs grandes questions écologiques, en combinant les domaines de la modélisation de la niche et de la phylogénétique. Elle s'applique aux composants importants de la biodiversité de l'Afrique australe. Les objectifs de cette thèse ont été l) de comparer différentes mesures de la biodiversité, 2) d'évaluer l'impact des changements climatiques à venir sur la perte de diversité phylogénétique, 3) d'analyser le lien potentiel entre diversité phylogénétique et diversité morphologique et 4) d'étudier le rôle potentiel de la phylogénie sur la structuration des niches macro-climatiques des espèces. La première partie de cette thèse fournit une comparaison spatiale, et une quantification du chevauchement, entre des prévisions de richesse spécifique et des prédictions de la diversité phylogénétique pour l'une des familles de plantes les plus riches en espèces de la région floristique du Cap (CFR), les Proteaceae. Il résulte des analyses que plusieurs mesures de diversité phylogénétique montraient des distributions spatiales différentes de la richesse spécifique, habituellement utilisée pour édicter des mesures de conservation. La deuxième partie évalue les effets potentiels des changements climatiques attendus sur les taux d'extinction d'animaux et de plantes de l'Afrique australe. Pour cela, des modèles de distribution d'espèces actuels et futurs ont permis de déterminer si l'extinction des espèces se traduira par une plus grande ou une plus petite perte de diversité phylogénétique en comparaison à un processus d'extinction aléatoire. Les résultats ont effectivement montré que l'extinction des espèces liées aux changements climatiques pourrait entraîner une perte plus grande de diversité phylogénétique. Cependant, cette perte ne serait plus grande que celle liée à un processus d'extinction aléatoire qu'à partir d'une forte perte de taxons dans chaque groupe. La troisième partie de cette thèse explore la relation entre distances phylogénétiques et morphologiques d'espèces de chauves-souris de l'Afrique australe. ll s'agit plus précisément de déterminer si une longue histoire évolutive correspond également à des variations morphologiques plus grandes dans ce groupe. Cette relation est en fait prédite par un modèle neutre d'évolution de caractères. Aucune évidence de cette relation n'a émergé des analyses. Au contraire, des tendances négatives ont été détectées, ce qui représenterait la conséquence d'une évolution convergente entre clades et des niveaux élevés de cloisonnement pour chaque clade. Enfin, la dernière partie présente une étude sur la répartition de la niche climatique des chauves-souris de l'Afrique australe. Dans cette étude je rapporte temps de divergence évolutive (ou deux espèces ont divergé depuis un ancêtre commun) au niveau de chevauchement de leurs niches climatiques. Les résultats n'ont pas pu mettre en évidence de lien entre ces deux paramètres. Les résultats soutiennent plutôt l'idée que cela pourrait être I dû à des niveaux particulièrement élevés de répartition de la niche à échelle fine.
Resumo:
Genetic diversity is essential for population survival and adaptation to changing environments. Demographic processes (e.g., bottleneck and expansion) and spatial structure (e.g., migration, number, and size of populations) are known to shape the patterns of the genetic diversity of populations. However, the impact of temporal changes in migration on genetic diversity has seldom been considered, although such events might be the norm. Indeed, during the millions of years of a species' lifetime, repeated isolation and reconnection of populations occur. Geological and climatic events alternately isolate and reconnect habitats. We analytically document the dynamics of genetic diversity after an abrupt change in migration given the mutation rate and the number and sizes of the populations. We demonstrate that during transient dynamics, genetic diversity can reach unexpectedly high values that can be maintained over thousands of generations. We discuss the consequences of such processes for the evolution of species based on standing genetic variation and how they can affect the reconstruction of a population's demographic and evolutionary history from genetic data. Our results also provide guidelines for the use of genetic data for the conservation of natural populations.
Resumo:
Abstract Macroevolutionary and microevolutionary studies provide complementary explanations of the processes shaping the evolution of niche breadth. Macroevolutionary approaches scrutinize factors such as the temporal and spatial environmental heterogeneities that drive differentiation among species. Microevolutionary studies, in contrast, focus on the processes that affect intraspecific variability. We combine these perspectives by using macroevolutionary models in a comparative study of intraspecific variability. We address potential differences in rates of evolution of niche breadth and position in annual and perennial plants of the Eriogonoideae subfamily of the Polygonaceae. We anticipated higher rates of evolution in annuals than in perennials owing to differences in generation time that are paralleled by rates of molecular evolution. Instead, we found that perennial eriogonoid species present greater environmental tolerance (wider climate niche) than annual species. Niche breadth of perennial species has evolved two to four times faster than in annuals, while niche optimum has diversified more rapidly among annual species than among perennials. Niche breadth and average elevation of species are correlated. Moreover, niche breadth increases more rapidly with mean species elevation in perennials than in annuals. Our results suggest that both environmental gradients and life-history strategy influence rates and patterns of niche breadth evolution.
Resumo:
Host-pathogen interactions are a major evolutionary force promoting local adaptation. Genes of the major histocompatibility complex (MHC) represent unique candidates to investigate evolutionary processes driving local adaptation to parasite communities. The present study aimed at identifying the relative roles of neutral and adaptive processes driving the evolution of MHC class IIB (MHCIIB) genes in natural populations of European minnows (Phoxinus phoxinus). To this end, we isolated and genotyped exon 2 of two MHCIIB gene duplicates (DAB1 and DAB3) and 1665 amplified fragment length polymorphism (AFLP) markers in nine populations, and characterized local bacterial communities by 16S rDNA barcoding using 454 amplicon sequencing. Both MHCIIB loci exhibited signs of historical balancing selection. Whereas genetic differentiation exceeded that of neutral markers at both loci, the populations' genetic diversities were positively correlated with local pathogen diversities only at DAB3. Overall, our results suggest pathogen-mediated local adaptation in European minnows at both MHCIIB loci. While at DAB1 selection appears to favor different alleles among populations, this is only partially the case in DAB3, which appears to be locally adapted to pathogen communities in terms of genetic diversity. These results provide new insights into the importance of host-pathogen interactions in driving local adaptation in the European minnow, and highlight that the importance of adaptive processes driving MHCIIB gene evolution may differ among duplicates within species, presumably as a consequence of alternative selective regimes or different genomic context.
Resumo:
Interspecific competition, life history traits, environmental heterogeneity and spatial structure as well as disturbance are known to impact the successful dispersal strategies in metacommunities. However, studies on the direction of impact of those factors on dispersal have yielded contradictory results and often considered only few competing dispersal strategies at the same time. We used a unifying modeling approach to contrast the combined effects of species traits (adult survival, specialization), environmental heterogeneity and structure (spatial autocorrelation, habitat availability) and disturbance on the selected, maintained and coexisting dispersal strategies in heterogeneous metacommunities. Using a negative exponential dispersal kernel, we allowed for variation of both species dispersal distance and dispersal rate. We showed that strong disturbance promotes species with high dispersal abilities, while low local adult survival and habitat availability select against them. Spatial autocorrelation favors species with higher dispersal ability when adult survival and disturbance rate are low, and selects against them in the opposite situation. Interestingly, several dispersal strategies coexist when disturbance and adult survival act in opposition, as for example when strong disturbance regime favors species with high dispersal abilities while low adult survival selects species with low dispersal. Our results unify apparently contradictory previous results and demonstrate that spatial structure, disturbance and adult survival determine the success and diversity of coexisting dispersal strategies in competing metacommunities.
Resumo:
The populations of Capercaillie (Tetrao urogallus), the largest European grouse, have seriously declined during the last century over most of their distribution in western and central Europe. In the Jura mountains, the relict population is now isolated and critically endangered (about 500 breeding adults). We developed a simulation software (TetrasPool) that accounts for age and spatial structure as well as stochastic processes, to perform a viability analysis and explore management scenarios for this population, capitalizing on a 24 years-long series of field data. Simulations predict a marked decline and a significant extinction risk over the next century, largely due to environmental and demographic stochasticity (average values of life-history parameters would otherwise allow stability). Variances among scenarios mainly stem from uncertainties about the shape and intensity of density dependence. Uncertainty analyses suggest to focus conservation efforts on enhancing, not only adult survival (as often advocated for long-lived species), but also recruitment. The juvenile stage matters when local populations undergo extinctions, because it ensures connectivity and recolonization. Besides limiting human perturbations, a silvicultural strategy aimed at opening forest structure should improve the quality and surface of available patches, independent of their size and localization. Such measures are to be taken urgently, if the population is to be saved.
Resumo:
Aim Macroevolutionary patterns and processes change substantially depending on levels of taxonomic and ecological organization, and the resolution of environmental and spatial variability. In comparative methods, the resolution of environmental and spatial variability often defines the number of selective regimes used to test whether phenotypic characteristics are adaptively correlated with the environment. Here, we examine how investigator choice of the number of selective regimes, determined by varying the resolution of among-species variability in the species climatic niche (hereafter called ecological scale'), influences trait morphological diversification among Eriogonoideae species. We assess whether adaptive or neutral processes drive the evolution of several morphological traits in these species. Location South-western North America. Methods We applied a phylogenetic framework of three evolutionary models to four morphological traits and the climatic niches of Eriogonoideae (in the buckwheat family, Polygonaceae). We tested whether morphological traits evolve in relation to climate by adaptive or neutral process, and whether the resulting patterns of morphological variability are conserved or convergent across the clade. We inspected adaptive models of evolution under different levels of resolution of among-species variability of the climatic niche. Results We show that morphological traits and climate niches of Eriogonoideae species are not phylogenetically conserved. Further, adaptive evolution of phenotypic traits is specific to climatic niche occupancy across this clade. Finally, the likely evolutionary process and the level of detectable niche conservatism change depending on the resolution of environmental variability of the climatic niche. Main conclusions Our study demonstrates the need to consider both the resolution of environmental variability and alternative evolutionary models to understand the morphological diversification that accompanies divergent adaptive evolution of lineages to climatic conditions.
Resumo:
The development of statistical models for forensic fingerprint identification purposes has been the subject of increasing research attention in recent years. This can be partly seen as a response to a number of commentators who claim that the scientific basis for fingerprint identification has not been adequately demonstrated. In addition, key forensic identification bodies such as ENFSI [1] and IAI [2] have recently endorsed and acknowledged the potential benefits of using statistical models as an important tool in support of the fingerprint identification process within the ACE-V framework. In this paper, we introduce a new Likelihood Ratio (LR) model based on Support Vector Machines (SVMs) trained with features discovered via morphometric and spatial analyses of corresponding minutiae configurations for both match and close non-match populations often found in AFIS candidate lists. Computed LR values are derived from a probabilistic framework based on SVMs that discover the intrinsic spatial differences of match and close non-match populations. Lastly, experimentation performed on a set of over 120,000 publicly available fingerprint images (mostly sourced from the National Institute of Standards and Technology (NIST) datasets) and a distortion set of approximately 40,000 images, is presented, illustrating that the proposed LR model is reliably guiding towards the right proposition in the identification assessment of match and close non-match populations. Results further indicate that the proposed model is a promising tool for fingerprint practitioners to use for analysing the spatial consistency of corresponding minutiae configurations.
Resumo:
L'utilisation efficace des systèmes géothermaux, la séquestration du CO2 pour limiter le changement climatique et la prévention de l'intrusion d'eau salée dans les aquifères costaux ne sont que quelques exemples qui démontrent notre besoin en technologies nouvelles pour suivre l'évolution des processus souterrains à partir de la surface. Un défi majeur est d'assurer la caractérisation et l'optimisation des performances de ces technologies à différentes échelles spatiales et temporelles. Les méthodes électromagnétiques (EM) d'ondes planes sont sensibles à la conductivité électrique du sous-sol et, par conséquent, à la conductivité électrique des fluides saturant la roche, à la présence de fractures connectées, à la température et aux matériaux géologiques. Ces méthodes sont régies par des équations valides sur de larges gammes de fréquences, permettant détudier de manières analogues des processus allant de quelques mètres sous la surface jusqu'à plusieurs kilomètres de profondeur. Néanmoins, ces méthodes sont soumises à une perte de résolution avec la profondeur à cause des propriétés diffusives du champ électromagnétique. Pour cette raison, l'estimation des modèles du sous-sol par ces méthodes doit prendre en compte des informations a priori afin de contraindre les modèles autant que possible et de permettre la quantification des incertitudes de ces modèles de façon appropriée. Dans la présente thèse, je développe des approches permettant la caractérisation statique et dynamique du sous-sol à l'aide d'ondes EM planes. Dans une première partie, je présente une approche déterministe permettant de réaliser des inversions répétées dans le temps (time-lapse) de données d'ondes EM planes en deux dimensions. Cette stratégie est basée sur l'incorporation dans l'algorithme d'informations a priori en fonction des changements du modèle de conductivité électrique attendus. Ceci est réalisé en intégrant une régularisation stochastique et des contraintes flexibles par rapport à la gamme des changements attendus en utilisant les multiplicateurs de Lagrange. J'utilise des normes différentes de la norme l2 pour contraindre la structure du modèle et obtenir des transitions abruptes entre les régions du model qui subissent des changements dans le temps et celles qui n'en subissent pas. Aussi, j'incorpore une stratégie afin d'éliminer les erreurs systématiques de données time-lapse. Ce travail a mis en évidence l'amélioration de la caractérisation des changements temporels par rapport aux approches classiques qui réalisent des inversions indépendantes à chaque pas de temps et comparent les modèles. Dans la seconde partie de cette thèse, j'adopte un formalisme bayésien et je teste la possibilité de quantifier les incertitudes sur les paramètres du modèle dans l'inversion d'ondes EM planes. Pour ce faire, je présente une stratégie d'inversion probabiliste basée sur des pixels à deux dimensions pour des inversions de données d'ondes EM planes et de tomographies de résistivité électrique (ERT) séparées et jointes. Je compare les incertitudes des paramètres du modèle en considérant différents types d'information a priori sur la structure du modèle et différentes fonctions de vraisemblance pour décrire les erreurs sur les données. Les résultats indiquent que la régularisation du modèle est nécessaire lorsqu'on a à faire à un large nombre de paramètres car cela permet d'accélérer la convergence des chaînes et d'obtenir des modèles plus réalistes. Cependent, ces contraintes mènent à des incertitudes d'estimations plus faibles, ce qui implique des distributions a posteriori qui ne contiennent pas le vrai modèledans les régions ou` la méthode présente une sensibilité limitée. Cette situation peut être améliorée en combinant des méthodes d'ondes EM planes avec d'autres méthodes complémentaires telles que l'ERT. De plus, je montre que le poids de régularisation des paramètres et l'écart-type des erreurs sur les données peuvent être retrouvés par une inversion probabiliste. Finalement, j'évalue la possibilité de caractériser une distribution tridimensionnelle d'un panache de traceur salin injecté dans le sous-sol en réalisant une inversion probabiliste time-lapse tridimensionnelle d'ondes EM planes. Etant donné que les inversions probabilistes sont très coûteuses en temps de calcul lorsque l'espace des paramètres présente une grande dimension, je propose une stratégie de réduction du modèle ou` les coefficients de décomposition des moments de Legendre du panache de traceur injecté ainsi que sa position sont estimés. Pour ce faire, un modèle de résistivité de base est nécessaire. Il peut être obtenu avant l'expérience time-lapse. Un test synthétique montre que la méthodologie marche bien quand le modèle de résistivité de base est caractérisé correctement. Cette méthodologie est aussi appliquée à un test de trac¸age par injection d'une solution saline et d'acides réalisé dans un système géothermal en Australie, puis comparée à une inversion time-lapse tridimensionnelle réalisée selon une approche déterministe. L'inversion probabiliste permet de mieux contraindre le panache du traceur salin gr^ace à la grande quantité d'informations a priori incluse dans l'algorithme. Néanmoins, les changements de conductivités nécessaires pour expliquer les changements observés dans les données sont plus grands que ce qu'expliquent notre connaissance actuelle des phénomenès physiques. Ce problème peut être lié à la qualité limitée du modèle de résistivité de base utilisé, indiquant ainsi que des efforts plus grands devront être fournis dans le futur pour obtenir des modèles de base de bonne qualité avant de réaliser des expériences dynamiques. Les études décrites dans cette thèse montrent que les méthodes d'ondes EM planes sont très utiles pour caractériser et suivre les variations temporelles du sous-sol sur de larges échelles. Les présentes approches améliorent l'évaluation des modèles obtenus, autant en termes d'incorporation d'informations a priori, qu'en termes de quantification d'incertitudes a posteriori. De plus, les stratégies développées peuvent être appliquées à d'autres méthodes géophysiques, et offrent une grande flexibilité pour l'incorporation d'informations additionnelles lorsqu'elles sont disponibles. -- The efficient use of geothermal systems, the sequestration of CO2 to mitigate climate change, and the prevention of seawater intrusion in coastal aquifers are only some examples that demonstrate the need for novel technologies to monitor subsurface processes from the surface. A main challenge is to assure optimal performance of such technologies at different temporal and spatial scales. Plane-wave electromagnetic (EM) methods are sensitive to subsurface electrical conductivity and consequently to fluid conductivity, fracture connectivity, temperature, and rock mineralogy. These methods have governing equations that are the same over a large range of frequencies, thus allowing to study in an analogous manner processes on scales ranging from few meters close to the surface down to several hundreds of kilometers depth. Unfortunately, they suffer from a significant resolution loss with depth due to the diffusive nature of the electromagnetic fields. Therefore, estimations of subsurface models that use these methods should incorporate a priori information to better constrain the models, and provide appropriate measures of model uncertainty. During my thesis, I have developed approaches to improve the static and dynamic characterization of the subsurface with plane-wave EM methods. In the first part of this thesis, I present a two-dimensional deterministic approach to perform time-lapse inversion of plane-wave EM data. The strategy is based on the incorporation of prior information into the inversion algorithm regarding the expected temporal changes in electrical conductivity. This is done by incorporating a flexible stochastic regularization and constraints regarding the expected ranges of the changes by using Lagrange multipliers. I use non-l2 norms to penalize the model update in order to obtain sharp transitions between regions that experience temporal changes and regions that do not. I also incorporate a time-lapse differencing strategy to remove systematic errors in the time-lapse inversion. This work presents improvements in the characterization of temporal changes with respect to the classical approach of performing separate inversions and computing differences between the models. In the second part of this thesis, I adopt a Bayesian framework and use Markov chain Monte Carlo (MCMC) simulations to quantify model parameter uncertainty in plane-wave EM inversion. For this purpose, I present a two-dimensional pixel-based probabilistic inversion strategy for separate and joint inversions of plane-wave EM and electrical resistivity tomography (ERT) data. I compare the uncertainties of the model parameters when considering different types of prior information on the model structure and different likelihood functions to describe the data errors. The results indicate that model regularization is necessary when dealing with a large number of model parameters because it helps to accelerate the convergence of the chains and leads to more realistic models. These constraints also lead to smaller uncertainty estimates, which imply posterior distributions that do not include the true underlying model in regions where the method has limited sensitivity. This situation can be improved by combining planewave EM methods with complimentary geophysical methods such as ERT. In addition, I show that an appropriate regularization weight and the standard deviation of the data errors can be retrieved by the MCMC inversion. Finally, I evaluate the possibility of characterizing the three-dimensional distribution of an injected water plume by performing three-dimensional time-lapse MCMC inversion of planewave EM data. Since MCMC inversion involves a significant computational burden in high parameter dimensions, I propose a model reduction strategy where the coefficients of a Legendre moment decomposition of the injected water plume and its location are estimated. For this purpose, a base resistivity model is needed which is obtained prior to the time-lapse experiment. A synthetic test shows that the methodology works well when the base resistivity model is correctly characterized. The methodology is also applied to an injection experiment performed in a geothermal system in Australia, and compared to a three-dimensional time-lapse inversion performed within a deterministic framework. The MCMC inversion better constrains the water plumes due to the larger amount of prior information that is included in the algorithm. The conductivity changes needed to explain the time-lapse data are much larger than what is physically possible based on present day understandings. This issue may be related to the base resistivity model used, therefore indicating that more efforts should be given to obtain high-quality base models prior to dynamic experiments. The studies described herein give clear evidence that plane-wave EM methods are useful to characterize and monitor the subsurface at a wide range of scales. The presented approaches contribute to an improved appraisal of the obtained models, both in terms of the incorporation of prior information in the algorithms and the posterior uncertainty quantification. In addition, the developed strategies can be applied to other geophysical methods, and offer great flexibility to incorporate additional information when available.
Resumo:
Animal dispersal in a fragmented landscape depends on the complex interaction between landscape structure and animal behavior. To better understand how individuals disperse, it is important to explicitly represent the properties of organisms and the landscape in which they move. A common approach to modelling dispersal includes representing the landscape as a grid of equal sized cells and then simulating individual movement as a correlated random walk. This approach uses a priori scale of resolution, which limits the representation of all landscape features and how different dispersal abilities are modelled. We develop a vector-based landscape model coupled with an object-oriented model for animal dispersal. In this spatially explicit dispersal model, landscape features are defined based on their geographic and thematic properties and dispersal is modelled through consideration of an organism's behavior, movement rules and searching strategies (such as visual cues). We present the model's underlying concepts, its ability to adequately represent landscape features and provide simulation of dispersal according to different dispersal abilities. We demonstrate the potential of the model by simulating two virtual species in a real Swiss landscape. This illustrates the model's ability to simulate complex dispersal processes and provides information about dispersal such as colonization probability and spatial distribution of the organism's path
Resumo:
Recent findings suggest that the visuo-spatial sketchpad (VSSP) may be divided into two sub-components processing dynamic or static visual information. This model may be useful to elucidate the confusion of data concerning the functioning of the VSSP in schizophrenia. The present study examined patients with schizophrenia and matched controls in a new working memory paradigm involving dynamic (the Ball Flight Task - BFT) or static (the Static Pattern Task - SPT) visual stimuli. In the BFT, the responses of the patients were apparently based on the retention of the last set of segments of the perceived trajectory, whereas control subjects relied on a more global strategy. We assume that the patients' performances are the result of a reduced capacity in chunking visual information since they relied mainly on the retention of the last set of segments. This assumption is confirmed by the poor performance of the patients in the static task (SPT), which requires a combination of stimulus components into object representations. We assume that the static/dynamic distinction may help us to understand the VSSP deficits in schizophrenia. This distinction also raises questions about the hypothesis that visuo-spatial working memory can simply be dissociated into visual and spatial sub-components.
Resumo:
Understanding the relative importance of historical and environmental processes in the structure and composition of communities is one of the longest quests in ecological research. Increasingly, researchers are relying on the functional and phylogenetic β-diversity of natural communities to provide concise explanations on the mechanistic basis of community assembly and the drivers of trait variation among species. The present study investigated how plant functional and phylogenetic β-diversity change along key environmental and spatial gradients in the Western Swiss Alps. Methods Using the quadratic diversity measure based on six functional traits: specific leaf area (SLA), leaf dry matter content (LDMC), plant height (H), leaf carbon content (C), leaf nitrogen content (N), and leaf carbon to nitrogen content (C/N) alongside a species-resolved phylogenetic tree, we relate variations in climate, spatial geographic, land use and soil gradients to plant functional and phylogenetic turnover in mountain communities of the Western Swiss Alps. Important findings Our study highlights two main points. First, climate and land use factors play an important role in mountain plant community turnover. Second, the overlap between plant functional and phylogenetic turnover along these gradients correlates with the low phylogenetic signal in traits, suggesting that in mountain landscapes, trait lability is likely an important factor in driving plant community assembly. Overall, we demonstrate the importance of climate and land use factors in plant functional and phylogenetic community turnover, and provide valuable complementary insights into understanding patterns of β-diversity along several ecological gradients.
Resumo:
1. The environment of parasites is determined largely by their hosts. Variation in host quality, abundance and spatial distribution affects the balance between selection within hosts and gene flow between hosts, and this should determine the evolution of a parasite's host-range and its propensity to locally adapt and speciate. 2. We investigated the relationship between host spatial distribution and (1) parasite host range, (2) parasite mobility and (3) parasite geographical range, in a comparative study of a major group of avian ectoparasites, the birds fleas belonging to the Ceratophyllidae (Siphonaptera). 3. Flea species parasitizing colonial birds had narrower host ranges than those infesting territorial nesters or birds with an intermediate level of nest aggregation. 4. The potential mobility and geographical ranges of fleas decreased with increasing level of aggregation of their hosts and increased with the fleas' host ranges. 5. Birds with aggregated nest distribution harboured more flea species mainly due to a larger number of specialists than solitarily nesting hosts. 6. These results emphasize the importance of host spatial distribution for the evolution of specialization, and for local adaptation and speciation in Ceratophyllid bird fleas.
Resumo:
AIM: Phylogenetic diversity patterns are increasingly being used to better understand the role of ecological and evolutionary processes in community assembly. Here, we quantify how these patterns are influenced by scale choices in terms of spatial and environmental extent and organismic scales. LOCATION: European Alps. METHODS: We applied 42 sampling strategies differing in their combination of focal scales. For each resulting sub-dataset, we estimated the phylogenetic diversity of the species pools, phylogenetic α-diversities of local communities, and statistics commonly used together with null models in order to infer non-random diversity patterns (i.e. phylogenetic clustering versus over-dispersion). Finally, we studied the effects of scale choices on these measures using regression analyses. RESULTS: Scale choices were decisive for revealing signals in diversity patterns. Notably, changes in focal scales sometimes reversed a pattern of over-dispersion into clustering. Organismic scale had a stronger effect than spatial and environmental extent. However, we did not find general rules for the direction of change from over-dispersion to clustering with changing scales. Importantly, these scale issues had only a weak influence when focusing on regional diversity patterns that change along abiotic gradients. MAIN CONCLUSIONS: Our results call for caution when combining phylogenetic data with distributional data to study how and why communities differ from random expectations of phylogenetic relatedness. These analyses seem to be robust when the focus is on relating community diversity patterns to variation in habitat conditions, such as abiotic gradients. However, if the focus is on identifying relevant assembly rules for local communities, the uncertainty arising from a certain scale choice can be immense. In the latter case, it becomes necessary to test whether emerging patterns are robust to alternative scale choices.