79 resultados para Turn signals.
Resumo:
The development of cancer is a major problem in immunosuppressed patients, particularly after solid organ transplantation. We have recently shown that calcineurin inhibitors (CNI) used to treat transplant patients may play a critical role in the rapid progression of renal cancer. To examine the intracellular signaling events for CNI-mediated direct tumorigenic pathway(s), we studied the effect of CNI on the activation of proto-oncogenic Ras in human normal renal epithelial cells (REC) and renal cancer cells (786-0 and Caki-1). We found that CNI treatment significantly increased the level of activated GTP-bound form of Ras in these cells. In addition, CNI induced the association of Ras with one of its effector molecules, Raf, but not with Rho and phosphatidylinositol 3-kinase; CNI treatment also promoted the phosphorylation of the Raf kinase inhibitory protein and the downregulation of carabin, all of which may lead to the activation of the Ras-Raf pathway. Blockade of this pathway through either pharmacologic inhibitors or gene-specific small interfering RNA significantly inhibited CNI-mediated augmented proliferation of renal cancer cells. Finally, it was observed that CNI treatment increased the growth of human renal tumors in vivo, and the Ras-Raf pathway is significantly activated in the tumor tissues of CNI-treated mice. Together, targeting the Ras-Raf pathway may prevent the development/progression of renal cancer in CNI-treated patients.
Resumo:
Stress induced by accumulation of unfolded proteins at the endoplasmic reticulum (ER) is a classic feature of secretory cells and is observed in many tissues in human diseases including cancer, diabetes, obesity, and neurodegeneration. Cellular adaptation to ER stress is achieved by the activation of the unfolded protein response (UPR), an integrated signal transduction pathway that transmits information about the protein folding status at the ER to the nucleus and cytosol to restore ER homeostasis. Inositol-requiring transmembrane kinase/endonuclease-1 (IRE1α), the most conserved UPR stress sensor, functions as an endoribonuclease that processes the mRNA of the transcription factor X-box binding protein-1 (XBP1). IRE1α signaling is a highly regulated process, controlled by the formation of a dynamic scaffold onto which many regulatory components assemble, here referred to as the UPRosome. Here we provide an overview of the signaling and regulatory mechanisms underlying IRE1α function and discuss the emerging role of the UPR in adaptation to protein folding stress in specialized secretory cells and in pathological conditions associated with alterations in ER homeostasis.
Resumo:
BACKGROUND: Cleavage of messenger RNA (mRNA) precursors is an essential step in mRNA maturation. The signal recognized by the cleavage enzyme complex has been characterized as an A rich region upstream of the cleavage site containing a motif with consensus AAUAAA, followed by a U or UG rich region downstream of the cleavage site. RESULTS: We studied these signals using exhaustive databases of cleavage sites obtained from aligning raw expressed sequence tags (EST) sequences to genomic sequences in Homo sapiens and Drosophila melanogaster. These data show that the polyadenylation signal is highly conserved in human and fly. In addition, de novo motif searches generated a refined description of the U-rich downstream sequence (DSE) element, which shows more divergence between the two species. These refined motifs are applied, within a Hidden Markov Model (HMM) framework, to predict mRNA cleavage sites. CONCLUSION: We demonstrate that the DSE is a specific motif in both human and Drosophila. These findings shed light on the sequence correlates of a highly conserved biological process, and improve in silico prediction of 3' mRNA cleavage and polyadenylation sites.
Resumo:
Based on the case of reforms aimed at integrating the provision of income protection and employment services for jobless people in Europe, this thesis seeks to understand the reasons which may prompt governments to engage in large-scale organisational reforms. Over the last 20 years, several European countries have indeed radically redesigned the organisational structure of their welfare state by merging or bundling existing front-line offices in charge of benefit payment and employment services together into 'one-stop' agencies. Whereas in academic and political debates, these reforms are generally presented as a necessary and rational response to the problems and inconsistencies induced by fragmentation in a context of the reorientation of welfare states towards labour market activation, this thesis shows that the agenda setting of these reforms is in fact the result of multidimensional political dynamics. More specifically, the main argument of this thesis is that these reforms are best understood not so such from the problems induced by organisational compartmentalism, whose political recognition is often controversial, but from the various goals that governments may simultaneously achieve by means of their adoption. This argument is tested by comparing agenda-setting processes of large-scale reforms of coordination in the United Kingdom (Jobcentre Plus), Germany (Hartz IV reform) and Denmark (2005 Jobcentre reform), and contrasting them with the Swiss case where the government has so far rejected any coordination initiative involving organisational redesign. This comparison brings to light the importance, for the rise of organisational reforms, of the possibility to couple them with the following three goals: first, goals related to the strengthening of activation policies; second, institutional goals seeking to redefine the balance of responsibilities between the central state and non-state actors, and finally electoral goals for governments eager to maintain political credibility. The decisive role of electoral goals in the three countries suggests that these reforms are less bound by partisan politics than by the particular pressures facing governments arrived in office after long periods in opposition.
Resumo:
The widely expressed protein Fas is a member of the tumour necrosis factor receptor family which can trigger apoptosis. However, Fas surface expression does not necessarily render cells susceptible to Fas ligand-induced death signals, indicating that inhibitors of the apoptosis-signalling pathway must exist. Here we report the characterization of an inhibitor of apoptosis, designated FLIP (for FLICE-inhibitory protein), which is predominantly expressed in muscle and lymphoid tissues. The short form, FLIPs, contains two death effector domains and is structurally related to the viral FLIP inhibitors of apoptosis, whereas the long form, FLIP(L), contains in addition a caspase-like domain in which the active-centre cysteine residue is substituted by a tyrosine residue. FLIPs and FLIP(L) interact with the adaptor protein FADD and the protease FLICE, and potently inhibit apoptosis induced by all known human death receptors. FLIP(L) is expressed during the early stage of T-cell activation, but disappears when T cells become susceptible to Fas ligand-mediated apoptosis. High levels of FLIP(L) protein are also detectable in melanoma cell lines and malignant melanoma tumours. Thus FLIP may be implicated in tissue homeostasis as an important regulator of apoptosis.
Resumo:
Collective evidence indicates that motor neuron degeneration in amyotrophic lateral sclerosis (ALS) is non-cell-autonomous and requires the interaction with the neighboring astrocytes. Recently, we reported that a subpopulation of spinal cord astrocytes degenerates in the microenvironment of motor neurons in the hSOD1(G93A) mouse model of ALS. Mechanistic studies in vitro identified a role for the excitatory amino acid glutamate in the gliodegenerative process via the activation of its inositol 1,4,5-triphosphate (IP(3))-generating metabotropic receptor 5 (mGluR5). Since non-physiological formation of IP(3) can prompt IP(3) receptor (IP(3)R)-mediated Ca(2+) release from the intracellular stores and trigger various forms of cell death, here we investigated the intracellular Ca(2+) signaling that occurs downstream of mGluR5 in hSOD1(G93A)-expressing astrocytes. Contrary to wild-type cells, stimulation of mGluR5 causes aberrant and persistent elevations of intracellular Ca(2+) concentrations ([Ca(2+)](i)) in the absence of spontaneous oscillations. The interaction of IP(3)Rs with the anti-apoptotic protein Bcl-X(L) was previously described to prevent cell death by modulating intracellular Ca(2+) signals. In mutant SOD1-expressing astrocytes, we found that the sole BH4 domain of Bcl-X(L), fused to the protein transduction domain of the HIV-1 TAT protein (TAT-BH4), is sufficient to restore sustained Ca(2+) oscillations and cell death resistance. Furthermore, chronic treatment of hSOD1(G93A) mice with the TAT-BH4 peptide reduces focal degeneration of astrocytes, slightly delays the onset of the disease and improves both motor performance and animal lifespan. Our results point at TAT-BH4 as a novel glioprotective agent with a therapeutic potential for ALS.
Resumo:
Intracardiac organization indices such as atrial fibrillation (AF) cycle length (AFCL) have been used to track the efficiency of stepwise catheter ablation (step-CA) of longstanding persistent AF, however with limited success. The morphology of AF activation waves reflects the underlying activation patterns. Its temporal evolution is a local organization indicator that could be potentially used for tracking the efficiency of step-CA. We report a new method for characterizing the structure of the temporal evolution of activation wave morphology. Using recurrence plots, novel organization indices are proposed. By computing their relative evolution during the first step of ablation vs baseline, we found that these new parameters are superior to AFCL to track the effect of step-CA "en route" to AF termination.
Resumo:
Background: The coagulation factor thrombin mediates ischemic neuronal deathand, at a low concentration, induces tolerance to ischemia.We investigated its modeof activation in ischemic neural tissue using an in vitro approach to distinguish therole of circulating coagulation factors from endogenous cerebral mechanisms. Wealso studied the signalling pathway downstream of thrombin in ischemia and afterthrombin preconditioning.Methods: Rat organotypic hippocampal slice cultures to 30 minute oxygen (5%)and glucose (1 mmol/L) deprivation (OGD).Results: Selective factor Xa (FXa) inhibition by fondaparinux during and afterOGD significantly reduced neuronal death in the CA1 after 48 hours. Thrombinactivity was increased in the medium 24 hours after OGD and this increasewas prevented by fondaparinux suggesting that FXa catalyzes the conversion ofprothrombin to thrombin in neural tissue after ischemia in vitro. Treatment withSCH79797, a selective antagonist of the thrombin receptor protease activatedreceptor-1 (PAR-1), significantly decreased neuronal cell death indicating thatthrombin signals ischemic damage via PAR-1. The JNK pathway plays an importantrole in cerebral ischemia and we observed activation of the JNK substrate,c-Jun in our model. Both the FXa inhibitor, fondaparinux and the PAR-1 antagonistSCH79797, decreased the level of phospho-c-Jun Ser73. After thrombin preconditioningc-Jun was activated by phosphorylation in the nuclei of neurons of the CA1.Treatment with a synthetic thrombin receptor agonist resulted in the same c-Junactivation profile and protection against subsequent OGD indicating that thrombinalso signals via PAR-1 and c-Jun in cell protection.Conclusion: These results indicate that FXa activates thrombin in cerebral ischemia,leading via PAR-1 to the activation of the JNK pathway resulting in neuronal death.Thrombin induced tolerance also involves PAR-1 and JNK, revealing commonfeatures in cell death and survival signalling.
Resumo:
Powerful volatile regulators of gene expression, pheromones and other airborne signals are of great interest in biology. Plants are masters of volatile production and release, not just from flowers and fruits, but also from vegetative tissues. The controlled release of bouquets of volatiles from leaves during attack by herbivores helps plants to deter herbivores or attract their predators, but volatiles have other roles in development and in the control of defence gene expression. Some of these roles may include long-distance signalling within and perhaps between plants.
Resumo:
Intrathymic T-cell maturation critically depends on the selective expansion of thymocytes expressing a functionally rearranged T-cell receptor (TCR) beta chain. In addition, TCR-independent signals also contribute to normal T-cell development. It is unclear whether and how signals from the 2 types of pathways are integrated. Here, we show that T-cell factor-1 (TCF-1), a nuclear effector of the canonical wingless/int (wnt)/catenin signaling pathway, ensures the survival of proliferating, pre-TCR(+) thymocytes. The survival of pre-TCR(+) thymocytes requires the presence of the N-terminal catenin-binding domain in TCF-1. This domain can bind the transcriptional coactivator beta-catenin and may also bind gamma-catenin (plakoglobin). However, in the absence of gamma-catenin, T-cell development is normal, supporting a role for beta-catenin. Signaling competent beta-catenin is present prior to and thus arises independently from pre-TCR signaling and does not substantially increase on pre-TCR signaling. In contrast, pre-TCR signaling significantly induces TCF-1 expression. This coincides with the activation of a wnt/catenin/TCF reporter transgene in vivo. Collectively, these data suggest that efficient TCF-dependent transcription requires that pre-TCR signaling induces TCF-1 expression, whereas wnt signals may provide the coactivator such as beta-catenin. The 2 pathways thus have to cooperate to ensure thymocyte survival at the pre-TCR stage.