162 resultados para Transport Surveys
Resumo:
The highly amiloride-sensitive epithelial sodium channel (ENaC) is an apical membrane constituent of cells of many salt-absorbing epithelia. In the kidney, the functional relevance of ENaC expression has been well established. ENaC mediates the aldosterone-dependent sodium reabsorption in the distal nephron and is involved in the regulation of blood pressure. Mutations in genes encoding ENaC subunits are causative for two human inherited diseases: Liddle's syndrome, a severe form of hypertension associated with ENaC hyperfunction, and pseudohypoaldosteronism (PHA-1), a salt-wasting syndrome caused by decreased ENaC function. Transgenic mouse technologies provide a useful tool to study the role of ENaC in vivo. Different mouse lines have been established in which each of the ENaC subunits was affected. The phenotypes observed in these mice demonstrated that each subunit is essential for survival and for regulation of sodium transport in kidney and colon. Moreover, the alpha subunit plays a specific role in the control of fluid absorption in the airways at birth. Such mice can now be used to study the role of ENaC in various organs and can serve as models to understand the pathophysiology of these human diseases.
Resumo:
A maize (Zea mays L. cv LG 11) root homogenate was prepared and centrifuged to sediment the mitochondria. The pellet (6 KP) and the supernatant (6 KS) were collected and fractionated on linear sucrose density gradients. Marker enzymes were used to study the distribution of the different cell membranes in the gradients. The distribution of the ATP- and pyrophosphate-dependent proton pumping activities was similar after 3 hours of centrifugation of the 6 KS or the 6 KP fraction. The pumps were clearly separated from the mitochondrial marker cytochrome c oxidase and the plasmalemma marker UDP-glucose-sterolglucosyl-transferase. The pyrophosphate-dependent proton pump might be associated with the tonoplast, as the ATP-dependent pump, despite the lack of a specific marker for this membrane. However, under all the conditions tested, the two pumps overlapped the Golgi markers latent UDPase and glucan synthase I and the ER marker NADH-cytochrome c reductase. It is therefore not possible to exclude the presence of proton pumping activities on the Golgi or the ER of maize root cells. The two pumps (but especially the pyrophosphate-dependent one) were more active (or more abundant) in the tip than in the basal part of maize roots, indicating that these activities might be important in growth processes.
Resumo:
Water balance is achieved through the ability of the kidney to control water reabsorption in the connecting tubule and the collecting duct. In a mouse cortical collecting duct cell line (mCCD(c11)), physiological concentrations of arginine vasopressin increased both electrogenic, amiloride-sensitive, epithelial sodium channel (ENaC)-mediated sodium transport measured by the short-circuit current (Isc) method and water flow (Jv apical to basal) measured by gravimetry with similar activation coefficient K(1/2) (6 and 12 pM, respectively). Jv increased linearly according to the osmotic gradient across the monolayer. A small but highly significant Jv was also measured under isoosmotic conditions. To test the coupling between sodium reabsorption and water flow, mCCD(c11) cells were treated for 24 h under isoosmotic condition with either diluent, amiloride, vasopressin or vasopressin and amiloride. Isc, Jv, and net chemical sodium fluxes were measured across the same monolayers. Around 30% of baseline and 50% of vasopressin-induced water flow is coupled to an amiloride-sensitive, ENaC-mediated, electrogenic sodium transport, whereas the remaining flow is coupled to an amiloride-insensitive, nonelectrogenic sodium transport mediated by an unknown electroneutral transporter. The mCCD(c11) cell line is a first example of a mammalian tight epithelium allowing quantitative study of the coupling between sodium and water transport. Our data are consistent with the 'near isoosmotic' fluid transport model.
Resumo:
BACKGROUND: There is a growing use of mobile devices to access the Internet. We examined whether participants who used a mobile device to access a brief online survey were quicker to respond to the survey but also, less likely to complete it than participants using a traditional web browser. FINDINGS: Using data from a recently completed online intervention trial, we found that participants using mobile devices were quicker to access the survey but less likely to complete it compared to participants using a traditional web browser. More concerning, mobile device users were also less likely to respond to a request to complete a six week follow-up survey compared to those using traditional web browsers. CONCLUSIONS: With roughly a third of participants using mobile devices to answer an online survey in this study, the impact of mobile device usage on survey completion rates is a concern. TRIAL REGISTRATION: ClinicalTrials.gov: NCT01521078.
Resumo:
Adeno-associated virus type 2 (AAV2) infection incites cells to arrest with 4N DNA content or die if the p53 pathway is defective. This arrest depends on AAV2 DNA, which is single stranded with inverted terminal repeats that serve as primers during viral DNA replication. Here, we show that AAV2 DNA triggers damage signaling that resembles the response to an aberrant cellular DNA replication fork. UV treatment of AAV2 enhances the G2 arrest by generating intrastrand DNA cross-links which persist in infected cells, disrupting viral DNA replication and maintaining the viral DNA in the single-stranded form. In cells, such DNA accumulates into nuclear foci with a signaling apparatus that involves DNA polymerase delta, ATR, TopBP1, RPA, and the Rad9/Rad1/Hus1 complex but not ATM or NBS1. Focus formation and damage signaling strictly depend on ATR and Chk1 functions. Activation of the Chk1 effector kinase leads to the virus-induced G2 arrest. AAV2 provides a novel way to study the cellular response to abnormal DNA replication without damaging cellular DNA. By using the AAV2 system, we show that in human cells activation of phosphorylation of Chk1 depends on TopBP1 and that it is a prerequisite for the appearance of DNA damage foci.
Resumo:
Inorganic phosphate (Pi) and zinc (Zn) are two essential nutrients for plant growth. In soils, these two minerals are either present in low amounts or are poorly available to plants. Consequently, worldwide agriculture has become dependent on external sources of Pi and Zn fertilizers to increase crop yields. However, this strategy is neither economically nor ecologically sustainable in the long term, particularly for Pi, which is a non-renewable resource. To date, research has emphasized the analysis of mineral nutrition considering each nutrient individually, and showed that Pi and Zn homeostasis is highly regulated in a complex process. Interestingly, numerous observations point to an unexpected interconnection between the homeostasis of the two nutrients. Nevertheless, despite their fundamental importance, the molecular bases and biological significance of these interactions remain largely unknown. Such interconnections can account for shortcomings of current agronomic models that typically focus on improving the assimilation of individual elements. Here, current knowledge on the regulation of the transport and signalling of Pi and Zn individually is reviewed, and then insights are provided on the recent progress made towards a better understanding of the Zn-Pi homeostasis interaction in plants.
What is "clinical data"? Why and how can they be collected during field surveys on medicinal plants?
Resumo:
ETHNOPHARMACOLOGICAL RELEVANCE: "Reverse pharmacology", also called "bedside-to-bench" or "field to pharmacy" approach, is a research process starting with documentation of clinical outcome as observed by patients with different therapeutic regimens. The treatment most significantly associated with cure is selected for future studies: first, clinical safety and efficacy; then in vivo and vitro studies. Some clinical data, i.e. details on patient status and progress, can be collected during ethnobotanical surveys; they will help clinical researchers and, once effectiveness and safety are established, will also help users of traditional medicine make safer and more effective choices. To gather clinical data successfully, ethnopharmacologists need to be backed by an appropriate team of specialists in medicine and epidemiology. Ethnopharmacologists can also gather important data on traditional medicine safety. MATERIALS AND METHODS: The first step is to create a consensus on the meaning of "clinical data", their interest and importance. An understanding of why "a cure is not a proof of effectiveness" is a starting point to avoid faulty interpretation of the clinical observations. RESULTS: Experience showed that, with the "bedside-to-bench" approach, a treatment derived from traditional recipe can be scientifically validated (in terms of safety and effectiveness) with a cost of less than a million euros, thus providing an end-product that is affordable, available and sustainable. CONCLUSIONS: With rigorous clinical study results, medicinal plant users gain the possibility to refine heath strategies. The field surveyor may gain a better relationship with the population, once she/he is seen as bringing information useful for the quality of care in the community.
Resumo:
Crystallization of anatectic melts in high-temperature metamorphic terrains releases volatile-rich magmas that can be transported into adjacent lithologies. This study addresses the variations in the oxygen, boron and hydrogen isotopic composition of aplite-pegmatite dikes that formed during the crystallization of anatectic melts in regional high-temperature metamorphism on the island of Naxos, Greece, and propagated upward into the overlying sequences of metamorphic schist. The transport distance of these dikes was increased through a significant horizontal component of travel that was imposed by contemporaneous low-angle extensional shearing. Laser fluorination oxygen isotope analyses of quartz, tourmaline, garnet, and biotite mineral separates from the aplite-pegmatite dikes show a progressive rise in delta(18)O values with increasing distance from the core. Oxygen isotope fractionations among quartz, tourmaline, and garnet show temperature variations from > 700degreesC down to similar to400degreesC. This range is considered to reflect isotopic fractionation beginning with crystallization at high temperatures in water-undersaturated conditions and then evolving through lower temperature crystallization and retrograde sub-solidus exchange. Two processes are examined for the cause of the progressive increase in delta(18)O values: (1) heterogeneous delta(18)O sources and (2) fluid-rock exchange between the aplite/pegmatite magmas and their host rock. Although the former process cannot be ruled out, there is as yet no evidence in the exposed sequences on Naxos for the presence of a suitable high delta(18)O magma source. In contrast, a tendency for the delta(18)O of quartz in the aplite/pegmatite dikes to approach that of the quartz in the metamorphic rock suggests that fluid-rock exchange with the host rock may potentially be an important process. Advection of fluid into the magma is examined based on Darcian fluid flow into an initially water-undersaturated buoyantly propagating aplitic dike magma. It is shown that such advective flow could only account for part of the O-18-enrichment, unless it were amplified by repeated injection of magma pulses, fluid recycling, and deformation-assisted post-crystallization exchange. The mechanism is, however, adequate to account for hydrogen isotope equilibration between dike and host rock. In contrast, variations in the delta(11)B values of tourmalines suggest that B-11/B-10 fractionation during crystallization and/or magma degassing was the major control of boron geochemistry rather than fluid-rock interaction and that the boron isotopic system was decoupled from that of oxygen. Copyright (C) 2003 Elsevier Ltd.
Resumo:
Hyperammonemia can provoke irreversible damage to the developing brain, with the formation of cortical atrophy, ventricular enlargement, demyelination or gray and white matter hypodensities. Among the various pathogenic mechanisms involved, alterations in cerebral energy have been demonstrated. In particular, we could show that ammonia exposure generates a secondary deficiency in creatine in brain cells, by altering the brain expression and activity of the genes allowing creatine synthesis (AGAT and GAMT) and transport (SLC6A8). On the other hand, it is known that creatine administration can exert protective effects in various neurodegenerative processes. We could also show that creatine co-treatment under ammonia exposure can protect developing brain cells from some of the deleterious effects of ammonia, in particular axonal growth impairment. This article focuses on the effects of ammonia exposure on creatine metabolism and transport in developing brain cells, and on the potential neuroprotective properties of creatine in the brain exposed to ammonium.
Resumo:
Yosemite Valley poses significant rockfall hazard and related risk due to its glacially steepened walls and approximately 4 million visitors annually. To assess rockfall hazard, it is necessary to evaluate the geologic structure that contributes to the destabilization of rockfall sources and locate the most probable future source areas. Coupling new remote sensing techniques (Terrestrial Laser Scanning, Aerial Laser Scanning) and traditional field surveys, we investigated the regional geologic and structural setting, the orientation of the primary discontinuity sets for large areas of Yosemite Valley, and the specific discontinuity sets present at active rockfall sources. This information, combined with better understanding of the geologic processes that contribute to the progressive destabilization and triggering of granitic rock slabs, contributes to a more accurate rockfall susceptibility assessment for Yosemite Valley and elsewhere.