123 resultados para Traffic Estimation
Resumo:
Rockfall propagation areas can be determined using a simple geometric rule known as shadow angle or energy line method based on a simple Coulomb frictional model implemented in the CONEFALL computer program. Runout zones are estimated from a digital terrain model (DTM) and a grid file containing the cells representing rockfall potential source areas. The cells of the DTM that are lowest in altitude and located within a cone centered on a rockfall source cell belong to the potential propagation area associated with that grid cell. In addition, the CONEFALL method allows estimation of mean and maximum velocities and energies of blocks in the rockfall propagation areas. Previous studies indicate that the slope angle cone ranges from 27° to 37° depending on the assumptions made, i.e. slope morphology, probability of reaching a point, maximum run-out, field observations. Different solutions based on previous work and an example of an actual rockfall event are presented here.
Resumo:
AbstractFor a wide range of environmental, hydrological, and engineering applications there is a fast growing need for high-resolution imaging. In this context, waveform tomographic imaging of crosshole georadar data is a powerful method able to provide images of pertinent electrical properties in near-surface environments with unprecedented spatial resolution. In contrast, conventional ray-based tomographic methods, which consider only a very limited part of the recorded signal (first-arrival traveltimes and maximum first-cycle amplitudes), suffer from inherent limitations in resolution and may prove to be inadequate in complex environments. For a typical crosshole georadar survey the potential improvement in resolution when using waveform-based approaches instead of ray-based approaches is in the range of one order-of- magnitude. Moreover, the spatial resolution of waveform-based inversions is comparable to that of common logging methods. While in exploration seismology waveform tomographic imaging has become well established over the past two decades, it is comparably still underdeveloped in the georadar domain despite corresponding needs. Recently, different groups have presented finite-difference time-domain waveform inversion schemes for crosshole georadar data, which are adaptations and extensions of Tarantola's seminal nonlinear generalized least-squares approach developed for the seismic case. First applications of these new crosshole georadar waveform inversion schemes on synthetic and field data have shown promising results. However, there is little known about the limits and performance of such schemes in complex environments. To this end, the general motivation of my thesis is the evaluation of the robustness and limitations of waveform inversion algorithms for crosshole georadar data in order to apply such schemes to a wide range of real world problems.One crucial issue to making applicable and effective any waveform scheme to real-world crosshole georadar problems is the accurate estimation of the source wavelet, which is unknown in reality. Waveform inversion schemes for crosshole georadar data require forward simulations of the wavefield in order to iteratively solve the inverse problem. Therefore, accurate knowledge of the source wavelet is critically important for successful application of such schemes. Relatively small differences in the estimated source wavelet shape can lead to large differences in the resulting tomograms. In the first part of my thesis, I explore the viability and robustness of a relatively simple iterative deconvolution technique that incorporates the estimation of the source wavelet into the waveform inversion procedure rather than adding additional model parameters into the inversion problem. Extensive tests indicate that this source wavelet estimation technique is simple yet effective, and is able to provide remarkably accurate and robust estimates of the source wavelet in the presence of strong heterogeneity in both the dielectric permittivity and electrical conductivity as well as significant ambient noise in the recorded data. Furthermore, our tests also indicate that the approach is insensitive to the phase characteristics of the starting wavelet, which is not the case when directly incorporating the wavelet estimation into the inverse problem.Another critical issue with crosshole georadar waveform inversion schemes which clearly needs to be investigated is the consequence of the common assumption of frequency- independent electromagnetic constitutive parameters. This is crucial since in reality, these parameters are known to be frequency-dependent and complex and thus recorded georadar data may show significant dispersive behaviour. In particular, in the presence of water, there is a wide body of evidence showing that the dielectric permittivity can be significantly frequency dependent over the GPR frequency range, due to a variety of relaxation processes. The second part of my thesis is therefore dedicated to the evaluation of the reconstruction limits of a non-dispersive crosshole georadar waveform inversion scheme in the presence of varying degrees of dielectric dispersion. I show that the inversion algorithm, combined with the iterative deconvolution-based source wavelet estimation procedure that is partially able to account for the frequency-dependent effects through an "effective" wavelet, performs remarkably well in weakly to moderately dispersive environments and has the ability to provide adequate tomographic reconstructions.
Resumo:
In Quantitative Microbial Risk Assessment, it is vital to understand how lag times of individual cells are distributed over a bacterial population. Such identified distributions can be used to predict the time by which, in a growth-supporting environment, a few pathogenic cells can multiply to a poisoning concentration level. We model the lag time of a single cell, inoculated into a new environment, by the delay of the growth function characterizing the generated subpopulation. We introduce an easy-to-implement procedure, based on the method of moments, to estimate the parameters of the distribution of single cell lag times. The advantage of the method is especially apparent for cases where the initial number of cells is small and random, and the culture is detectable only in the exponential growth phase.
Resumo:
BACKGROUND: Creatinine clearance is the most common method used to assess glomerular filtration rate (GFR). In children, GFR can also be estimated without urine collection, using the formula GFR (mL/min x 1.73 m2) = K x height [cm]/Pcr [mumol/L]), where Pcr represents the plasma creatinine concentration. K is usually calculated using creatinine clearance (Ccr) as an index of GFR. The aim of the present study was to evaluate the reliability of the formula, using the standard UV/P inulin clearance to calculate K. METHODS: Clearance data obtained in 200 patients (1 month to 23 years) during the years 1988-1994 were used to calculate the factor K as a function of age. Forty-four additional patients were studied prospectively in conditions of either hydropenia or water diuresis in order to evaluate the possible variation of K as a function of urine flow rate. RESULTS: When GFR was estimated by the standard inulin clearance, the calculated values of K was 39 (infants less than 6 months), 44 (1-2 years) and 47 (2-12 years). The correlation between the values of GFR, as estimated by the formula, and the values measured by the standard clearance of inulin was highly significant; the scatter of individual values was however substantial. When K was calculated using Ccr, the formula overestimated Cin at all urine flow rates. When calculated from Ccr, K varied as a function of urine flow rate (K = 50 at urine flow rates of 3.5 and K = 64 at urine flow rates of 8.5 mL/min x 1.73 m2). When calculated from Cin, in the same conditions, K remained constant with a value of 50. CONCLUSIONS: The formula GFR = K x H/Pcr can be used to estimate GFR. The scatter of values precludes however the use of the formula to estimate GFR in pathophysiological studies. The formula should only be used when K is calculated from Cin, and the plasma creatinine concentration is measured in well defined conditions of hydration.
Resumo:
Time periods composing stance phase of gait can be clinically meaningful parameters to reveal differences between normal and pathological gait. This study aimed, first, to describe a novel method for detecting stance and inner-stance temporal events based on foot-worn inertial sensors; second, to extract and validate relevant metrics from those events; and third, to investigate their suitability as clinical outcome for gait evaluations. 42 subjects including healthy subjects and patients before and after surgical treatments for ankle osteoarthritis performed 50-m walking trials while wearing foot-worn inertial sensors and pressure insoles as a reference system. Several hypotheses were evaluated to detect heel-strike, toe-strike, heel-off, and toe-off based on kinematic features. Detected events were compared with the reference system on 3193 gait cycles and showed good accuracy and precision. Absolute and relative stance periods, namely loading response, foot-flat, and push-off were then estimated, validated, and compared statistically between populations. Besides significant differences observed in stance duration, the analysis revealed differing tendencies with notably a shorter foot-flat in healthy subjects. The result indicated which features in inertial sensors' signals should be preferred for detecting precisely and accurately temporal events against a reference standard. The system is suitable for clinical evaluations and provides temporal analysis of gait beyond the common swing/stance decomposition, through a quantitative estimation of inner-stance phases such as foot-flat.
Resumo:
Mammalian sex chromosomes have undergone profound changes since evolving from ancestral autosomes. By examining retroposed genes in the human and mouse genomes, we demonstrate that, during evolution, the mammalian X chromosome has generated and recruited a disproportionately high number of functional retroposed genes, whereas the autosomes experienced lower gene turnover. Most autosomal copies originating from X-linked genes exhibited testis-biased expression. Such export is incompatible with mutational bias and is likely driven by natural selection to attain male germline function. However, the excess recruitment is consistent with a combination of both natural selection and mutational bias.
Resumo:
Atlas registration is a recognized paradigm for the automatic segmentation of normal MR brain images. Unfortunately, atlas-based segmentation has been of limited use in presence of large space-occupying lesions. In fact, brain deformations induced by such lesions are added to normal anatomical variability and they may dramatically shift and deform anatomically or functionally important brain structures. In this work, we chose to focus on the problem of inter-subject registration of MR images with large tumors, inducing a significant shift of surrounding anatomical structures. First, a brief survey of the existing methods that have been proposed to deal with this problem is presented. This introduces the discussion about the requirements and desirable properties that we consider necessary to be fulfilled by a registration method in this context: To have a dense and smooth deformation field and a model of lesion growth, to model different deformability for some structures, to introduce more prior knowledge, and to use voxel-based features with a similarity measure robust to intensity differences. In a second part of this work, we propose a new approach that overcomes some of the main limitations of the existing techniques while complying with most of the desired requirements above. Our algorithm combines the mathematical framework for computing a variational flow proposed by Hermosillo et al. [G. Hermosillo, C. Chefd'Hotel, O. Faugeras, A variational approach to multi-modal image matching, Tech. Rep., INRIA (February 2001).] with the radial lesion growth pattern presented by Bach et al. [M. Bach Cuadra, C. Pollo, A. Bardera, O. Cuisenaire, J.-G. Villemure, J.-Ph. Thiran, Atlas-based segmentation of pathological MR brain images using a model of lesion growth, IEEE Trans. Med. Imag. 23 (10) (2004) 1301-1314.]. Results on patients with a meningioma are visually assessed and compared to those obtained with the most similar method from the state-of-the-art.
Resumo:
The geochemical compositions of biogenic carbonates are increasingly used for palaeoenvironmental reconstructions. The skeletal delta O-18 temperature relationship is dependent on water salinity, so many recent studies have focused on the Mg/Ca and Sr/Ca ratios because those ratios in water do not change significantly on short time scales. Thus, those elemental ratios are considered to be good palaeotemperature proxies in many biominerals, although their use remains ambiguous in bivalve shells. Here, we present the high-resolution Mg/Ca ratios of two modern species of juvenile and adult oyster shells, Crassostrea gigas and Ostrea edulis. These specimens were grown in controlled conditions for over one year in two different locations. In situ monthly Mn-marking of the shells has been used for day calibration. The daily Mg/Ca.ratios in the shell have been measured with an electron microprobe. The high frequency Mg/Ca variation of all specimens displays good synchronism with lunar cycles, suggesting that tides strongly influence the incorporation of Mg/Ca into the shells. Highly significant correlation coefficients (0.70<R<0.83, p<0.0001) between the Mg/Ca ratios and the seawater temperature are obtained only for juvenile C. gigas samples, while metabolic control of Mg/Ca incorporation and lower shell growth rates preclude the use of the Mg/Ca ratio in adult shells as a palaeothermometer. Data from three juvenile C. gigas shells from the two study sites are selected to establish a relationship: T = 3.77Mg/Ca + 1.88, where T is in degrees C and Mg/Ca in mmol/mol. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
We evaluated the accuracy of skinfold thicknesses, BMI and waist circumference for the prediction of percentage body fat (PBF) in a representative sample of 372 Swiss children aged 6-13 years. PBF was measured using dual-energy X-ray absorptiometry. On the basis of a preliminary bootstrap selection of predictors, seven regression models were evaluated. All models included sex, age and pubertal stage plus one of the following predictors: (1) log-transformed triceps skinfold (logTSF); (2) logTSF and waist circumference; (3) log-transformed sum of triceps and subscapular skinfolds (logSF2); (4) log-transformed sum of triceps, biceps, subscapular and supra-iliac skinfolds (logSF4); (5) BMI; (6) waist circumference; (7) BMI and waist circumference. The adjusted determination coefficient (R² adj) and the root mean squared error (RMSE; kg) were calculated for each model. LogSF4 (R² adj 0.85; RMSE 2.35) and logSF2 (R² adj 0.82; RMSE 2.54) were similarly accurate at predicting PBF and superior to logTSF (R² adj 0.75; RMSE 3.02), logTSF combined with waist circumference (R² adj 0.78; RMSE 2.85), BMI (R² adj 0.62; RMSE 3.73), waist circumference (R² adj 0.58; RMSE 3.89), and BMI combined with waist circumference (R² adj 0.63; RMSE 3.66) (P < 0.001 for all values of R² adj). The finding that logSF4 was only modestly superior to logSF2 and that logTSF was better than BMI and waist circumference at predicting PBF has important implications for paediatric epidemiological studies aimed at disentangling the effect of body fat on health outcomes.
Resumo:
Tripping is considered a major cause of fall in older people. Therefore, foot clearance (i.e., height of the foot above ground during swing phase) could be a key factor to better understand the complex relationship between gait and falls. This paper presents a new method to estimate clearance using a foot-worn and wireless inertial sensor system. The method relies on the computation of foot orientation and trajectory from sensors signal data fusion, combined with the temporal detection of toe-off and heel-strike events. Based on a kinematic model that automatically estimates sensor position relative to the foot, heel and toe trajectories are estimated. 2-D and 3-D models are presented with different solving approaches, and validated against an optical motion capture system on 12 healthy adults performing short walking trials at self-selected, slow, and fast speed. Parameters corresponding to local minimum and maximum of heel and toe clearance were extracted and showed accuracy ± precision of 4.1 ± 2.3 cm for maximal heel clearance and 1.3 ± 0.9 cm for minimal toe clearance compared to the reference. The system is lightweight, wireless, easy to wear and to use, and provide a new and useful tool for routine clinical assessment of gait outside a dedicated laboratory.