57 resultados para Topological insulator


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In eukaryotic cells, transgene expression levels may be limited by an unfavourable chromatin structure at the integration site. Epigenetic regulators are DNA sequences which may protect transgenes from such position effect. We evaluated different epigenetic regulators for their ability to protect transgene expression at telomeres, which are commonly associated to low or inconsistent expression because of their repressive chromatin environment. Although to variable extents, matrix attachment regions (MARs), ubiquitous chromatin opening element (UCOE) and the chicken cHS4 insulator acted as barrier elements, protecting a telomeric-distal transgene from silencing. MARs also increased the probability of silent gene reactivation in time-course experiments. Additionally, all MARs improved the level of expression in non-silenced cells, unlike other elements. MARs were associated to histone marks usually linked to actively expressed genes, especially acetylation of histone H3 and H4, suggesting that they may prevent the spread of silencing chromatin by imposing acetylation marks on nearby nucleosomes. Alternatively, an UCOE was found to act by preventing deposition of repressive chromatin marks. We conclude that epigenetic DNA elements used to enhance and stabilize transgene expression all have specific epigenetic signature that might be at the basis of their mode of action.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Matrix attachment regions (MAR) generally act as epigenetic regulatory sequences that increase gene expression, and they were proposed to partition chromosomes into loop-forming domains. However, their molecular mode of action remains poorly understood. Here, we assessed the possible contribution of the AT-rich core and adjacent transcription factor binding motifs to the transcription augmenting and anti-silencing effects of human MAR 1-68. Either flanking sequences together with the AT-rich core were required to obtain the full MAR effects. Shortened MAR derivatives retaining full MAR activity were constructed from combinations of the AT-rich sequence and multimerized transcription factor binding motifs, implying that both transcription factors and the AT-rich microsatellite sequence are required to mediate the MAR effect. Genomic analysis indicated that MAR AT-rich cores may be depleted of histones and enriched in RNA polymerase II, providing a molecular interpretation of their chromatin domain insulator and transcriptional augmentation activities.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The quality of environmental data analysis and propagation of errors are heavily affected by the representativity of the initial sampling design [CRE 93, DEU 97, KAN 04a, LEN 06, MUL07]. Geostatistical methods such as kriging are related to field samples, whose spatial distribution is crucial for the correct detection of the phenomena. Literature about the design of environmental monitoring networks (MN) is widespread and several interesting books have recently been published [GRU 06, LEN 06, MUL 07] in order to clarify the basic principles of spatial sampling design (monitoring networks optimization) based on Support Vector Machines was proposed. Nonetheless, modelers often receive real data coming from environmental monitoring networks that suffer from problems of non-homogenity (clustering). Clustering can be related to the preferential sampling or to the impossibility of reaching certain regions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In otherwise successful gene therapy trials insertional mutagenesis has resulted in leukemia. The identification of new short synthetic genetic insulator elements (GIE) which would both prevent such activation effects and shield the transgene from silencing, is a main challenge. Previous attempts with e.g. b-globin HS4, have met with poor efficacy and genetic instability. We have investigated potential improvement with two new candidate synthetic GIEs in SIN-gamma and lentiviral vectors. With each constructs two internal promoters have been tested: either the strong Fr- MuLV-U3 or the housekeeping hPGK.We could identify a specific combination of insulator 2 repeats which translates into best functional activity, high titers and boundary effect in both gammaretro and lentivectors. In target cells a dramatic shift of expression is observed with an homogenous profile the level of which strictly depends on the promoter strength. These data remain stable in both HeLa cells over three months and cord blood HSCs for two months, irrespective of the multiplicity of infection (MOI). In comparison, control native and SIN vectors expression levels show heterogeneous, depend on the MOI and prove unstable. We have undertaken genotoxicity assessment in comparing integration patterns ingenuity in human target cells sampled over three months using high-throughput pyro-sequencing. Data will be presented. Further genotoxicity assessment will include in vivo studies. We have established insulated vectors which harbour both boundary and enhancer-blocking effect and show stable in prolonged in vitro culture conditions. Work performed with support of EC-DG research FP6-NoE, CLINIGENE: LSHB-CT-2006-018933

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Depuis le séminaire H. Cartan de 1954-55, il est bien connu que l'on peut trouver des éléments de torsion arbitrairement grande dans l'homologie entière des espaces d'Eilenberg-MacLane K(G,n) où G est un groupe abélien non trivial et n>1. L'objectif majeur de ce travail est d'étendre ce résultat à des H-espaces possédant plus d'un groupe d'homotopie non trivial. Dans le but de contrôler précisément le résultat de H. Cartan, on commence par étudier la dualité entre l'homologie et la cohomologie des espaces d'Eilenberg-MacLane 2-locaux de type fini. On parvient ainsi à raffiner quelques résultats qui découlent des calculs de H. Cartan. Le résultat principal de ce travail peut être formulé comme suit. Soit X un H-espace ne possédant que deux groupes d'homotopie non triviaux, tous deux finis et de 2-torsion. Alors X n'admet pas d'exposant pour son groupe gradué d'homologie entière réduite. On construit une large classe d'espaces pour laquelle ce résultat n'est qu'une conséquence d'une caractéristique topologique, à savoir l'existence d'un rétract faible X K(G,n) pour un certain groupe abélien G et n>1. On généralise également notre résultat principal à des espaces plus compliqués en utilisant la suite spectrale d'Eilenberg-Moore ainsi que des méthodes analytiques faisant apparaître les nombres de Betti et leur comportement asymptotique. Finalement, on conjecture que les espaces qui ne possédent qu'un nombre fini de groupes d'homotopie non triviaux n'admettent pas d'exposant homologique. Ce travail contient par ailleurs la présentation de la « machine d'Eilenberg-MacLane », un programme C++ conçu pour calculer explicitement les groupes d'homologie entière des espaces d'Eilenberg-MacLane. <br/><br/>By the work of H. Cartan, it is well known that one can find elements of arbitrarilly high torsion in the integral (co)homology groups of an Eilenberg-MacLane space K(G,n), where G is a non-trivial abelian group and n>1. The main goal of this work is to extend this result to H-spaces having more than one non-trivial homotopy groups. In order to have an accurate hold on H. Cartan's result, we start by studying the duality between homology and cohomology of 2-local Eilenberg-MacLane spaces of finite type. This leads us to some improvements of H. Cartan's methods in this particular case. Our main result can be stated as follows. Let X be an H-space with two non-vanishing finite 2-torsion homotopy groups. Then X does not admit any exponent for its reduced integral graded (co)homology group. We construct a wide class of examples for which this result is a simple consequence of a topological feature, namely the existence of a weak retract X K(G,n) for some abelian group G and n>1. We also generalize our main result to more complicated stable two stage Postnikov systems, using the Eilenberg-Moore spectral sequence and analytic methods involving Betti numbers and their asymptotic behaviour. Finally, we investigate some guesses on the non-existence of homology exponents for finite Postnikov towers. We conjecture that Postnikov pieces do not admit any (co)homology exponent. This work also includes the presentation of the "Eilenberg-MacLane machine", a C++ program designed to compute explicitely all integral homology groups of Eilenberg-MacLane spaces. <br/><br/>Il est toujours difficile pour un mathématicien de parler de son travail. La difficulté réside dans le fait que les objets qu'il étudie sont abstraits. On rencontre assez rarement un espace vectoriel, une catégorie abélienne ou une transformée de Laplace au coin de la rue ! Cependant, même si les objets mathématiques sont difficiles à cerner pour un non-mathématicien, les méthodes pour les étudier sont essentiellement les mêmes que celles utilisées dans les autres disciplines scientifiques. On décortique les objets complexes en composantes plus simples à étudier. On dresse la liste des propriétés des objets mathématiques, puis on les classe en formant des familles d'objets partageant un caractère commun. On cherche des façons différentes, mais équivalentes, de formuler un problème. Etc. Mon travail concerne le domaine mathématique de la topologie algébrique. Le but ultime de cette discipline est de parvenir à classifier tous les espaces topologiques en faisant usage de l'algèbre. Cette activité est comparable à celle d'un ornithologue (topologue) qui étudierait les oiseaux (les espaces topologiques) par exemple à l'aide de jumelles (l'algèbre). S'il voit un oiseau de petite taille, arboricole, chanteur et bâtisseur de nids, pourvu de pattes à quatre doigts, dont trois en avant et un, muni d'une forte griffe, en arrière, alors il en déduira à coup sûr que c'est un passereau. Il lui restera encore à déterminer si c'est un moineau, un merle ou un rossignol. Considérons ci-dessous quelques exemples d'espaces topologiques: a) un cube creux, b) une sphère et c) un tore creux (c.-à-d. une chambre à air). a) b) c) Si toute personne normalement constituée perçoit ici trois figures différentes, le topologue, lui, n'en voit que deux ! De son point de vue, le cube et la sphère ne sont pas différents puisque ils sont homéomorphes: on peut transformer l'un en l'autre de façon continue (il suffirait de souffler dans le cube pour obtenir la sphère). Par contre, la sphère et le tore ne sont pas homéomorphes: triturez la sphère de toutes les façons (sans la déchirer), jamais vous n'obtiendrez le tore. Il existe un infinité d'espaces topologiques et, contrairement à ce que l'on serait naïvement tenté de croire, déterminer si deux d'entre eux sont homéomorphes est très difficile en général. Pour essayer de résoudre ce problème, les topologues ont eu l'idée de faire intervenir l'algèbre dans leurs raisonnements. Ce fut la naissance de la théorie de l'homotopie. Il s'agit, suivant une recette bien particulière, d'associer à tout espace topologique une infinité de ce que les algébristes appellent des groupes. Les groupes ainsi obtenus sont appelés groupes d'homotopie de l'espace topologique. Les mathématiciens ont commencé par montrer que deux espaces topologiques qui sont homéomorphes (par exemple le cube et la sphère) ont les même groupes d'homotopie. On parle alors d'invariants (les groupes d'homotopie sont bien invariants relativement à des espaces topologiques qui sont homéomorphes). Par conséquent, deux espaces topologiques qui n'ont pas les mêmes groupes d'homotopie ne peuvent en aucun cas être homéomorphes. C'est là un excellent moyen de classer les espaces topologiques (pensez à l'ornithologue qui observe les pattes des oiseaux pour déterminer s'il a affaire à un passereau ou non). Mon travail porte sur les espaces topologiques qui n'ont qu'un nombre fini de groupes d'homotopie non nuls. De tels espaces sont appelés des tours de Postnikov finies. On y étudie leurs groupes de cohomologie entière, une autre famille d'invariants, à l'instar des groupes d'homotopie. On mesure d'une certaine manière la taille d'un groupe de cohomologie à l'aide de la notion d'exposant; ainsi, un groupe de cohomologie possédant un exposant est relativement petit. L'un des résultats principaux de ce travail porte sur une étude de la taille des groupes de cohomologie des tours de Postnikov finies. Il s'agit du théorème suivant: un H-espace topologique 1-connexe 2-local et de type fini qui ne possède qu'un ou deux groupes d'homotopie non nuls n'a pas d'exposant pour son groupe gradué de cohomologie entière réduite. S'il fallait interpréter qualitativement ce résultat, on pourrait dire que plus un espace est petit du point de vue de la cohomologie (c.-à-d. s'il possède un exposant cohomologique), plus il est intéressant du point de vue de l'homotopie (c.-à-d. il aura plus de deux groupes d'homotopie non nuls). Il ressort de mon travail que de tels espaces sont très intéressants dans le sens où ils peuvent avoir une infinité de groupes d'homotopie non nuls. Jean-Pierre Serre, médaillé Fields en 1954, a montré que toutes les sphères de dimension >1 ont une infinité de groupes d'homotopie non nuls. Des espaces avec un exposant cohomologique aux sphères, il n'y a qu'un pas à franchir...

Relevância:

10.00% 10.00%

Publicador:

Resumo:

La hiérarchie de Wagner constitue à ce jour la plus fine classification des langages ω-réguliers. Par ailleurs, l'approche algébrique de la théorie de langages formels montre que ces ensembles ω-réguliers correspondent précisément aux langages reconnaissables par des ω-semigroupes finis pointés. Ce travail s'inscrit dans ce contexte en fournissant une description complète de la contrepartie algébrique de la hiérarchie de Wagner, et ce par le biais de la théorie descriptive des jeux de Wadge. Plus précisément, nous montrons d'abord que le degré de Wagner d'un langage ω-régulier est effectivement un invariant syntaxique. Nous définissons ensuite une relation de réduction entre ω-semigroupes pointés par le biais d'un jeu infini de type Wadge. La collection de ces structures algébriques ordonnée par cette relation apparaît alors comme étant isomorphe à la hiérarchie de Wagner, soit un quasi bon ordre décidable de largeur 2 et de hauteur ω. Nous exposons par la suite une procédure de décidabilité de cette hiérarchie algébrique : on décrit une représentation graphique des ω-semigroupes finis pointés, puis un algorithme sur ces structures graphiques qui calcule le degré de Wagner de n'importe quel élément. Ainsi le degré de Wagner de tout langage ω-régulier peut être calculé de manière effective directement sur son image syntaxique. Nous montrons ensuite comment construire directement et inductivement une structure de n''importe quel degré. Nous terminons par une description détaillée des invariants algébriques qui caractérisent tous les degrés de cette hiérarchie. Abstract The Wagner hierarchy is known so far to be the most refined topological classification of ω-rational languages. Also, the algebraic study of formal languages shows that these ω-rational sets correspond precisely to the languages recognizable by finite pointed ω-semigroups. Within this framework, we provide a construction of the algebraic counterpart of the Wagner hierarchy. We adopt a hierarchical game approach, by translating the Wadge theory from the ω-rational language to the ω-semigroup context. More precisely, we first show that the Wagner degree is indeed a syntactic invariant. We then define a reduction relation on finite pointed ω-semigroups by means of a Wadge-like infinite two-player game. The collection of these algebraic structures ordered by this reduction is then proven to be isomorphic to the Wagner hierarchy, namely a well-founded and decidable partial ordering of width 2 and height $\omega^\omega$. We also describe a decidability procedure of this hierarchy: we introduce a graph representation of finite pointed ω-semigroups allowing to compute their precise Wagner degrees. The Wagner degree of every ω-rational language can therefore be computed directly on its syntactic image. We then show how to build a finite pointed ω-semigroup of any given Wagner degree. We finally describe the algebraic invariants characterizing every Wagner degree of this hierarchy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Graph theory has provided a key mathematical framework to analyse the architecture of human brain networks. This architecture embodies an inherently complex relationship between connection topology, the spatial arrangement of network elements, and the resulting network cost and functional performance. An exploration of these interacting factors and driving forces may reveal salient network features that are critically important for shaping and constraining the brain's topological organization and its evolvability. Several studies have pointed to an economic balance between network cost and network efficiency with networks organized in an 'economical' small-world favouring high communication efficiency at a low wiring cost. In this study, we define and explore a network morphospace in order to characterize different aspects of communication efficiency in human brain networks. Using a multi-objective evolutionary approach that approximates a Pareto-optimal set within the morphospace, we investigate the capacity of anatomical brain networks to evolve towards topologies that exhibit optimal information processing features while preserving network cost. This approach allows us to investigate network topologies that emerge under specific selection pressures, thus providing some insight into the selectional forces that may have shaped the network architecture of existing human brains.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We have investigated the phenomenon of deprivation in contemporary Switzerland through the adoption of a multidimensional, dynamic approach. By applying Self Organizing Maps (SOM) to a set of 33 non-monetary indicators from the 2009 wave of the Swiss Household Panel (SHP), we identified 13 prototypical forms (or clusters) of well-being, financial vulnerability, psycho-physiological fragility and deprivation within a topological dimensional space. Then new data from the previous waves (2003 to 2008) were classified by the SOM model, making it possible to estimate the weight of the different clusters in time and reconstruct the dynamics of stability and mobility of individuals within the map. Looking at the transition probabilities between year t and year t+1, we observed that the paths of mobility which catalyze the largest number of observations are those connecting clusters that are adjacent on the topological space.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Quest for Orthologs (QfO) is a community effort with the goal to improve and benchmark orthology predictions. As quality assessment assumes prior knowledge on species phylogenies, we investigated the congruency between existing species trees by comparing the relationships of 147 QfO reference organisms from six Tree of Life (ToL)/species tree projects: The National Center for Biotechnology Information (NCBI) taxonomy, Opentree of Life, the sequenced species/species ToL, the 16S ribosomal RNA (rRNA) database, and trees published by Ciccarelli et al. (Ciccarelli FD, et al. 2006. Toward automatic reconstruction of a highly resolved tree of life. Science 311:1283-1287) and by Huerta-Cepas et al. (Huerta-Cepas J, Marcet-Houben M, Gabaldon T. 2014. A nested phylogenetic reconstruction approach provides scalable resolution in the eukaryotic Tree Of Life. PeerJ PrePrints 2:223) Our study reveals that each species tree suggests a different phylogeny: 87 of the 146 (60%) possible splits of a dichotomous and rooted tree are congruent, while all other splits are incongruent in at least one of the species trees. Topological differences are observed not only at deep speciation events, but also within younger clades, such as Hominidae, Rodentia, Laurasiatheria, or rosids. The evolutionary relationships of 27 archaea and bacteria are highly inconsistent. By assessing 458,108 gene trees from 65 genomes, we show that consistent species topologies are more often supported by gene phylogenies than contradicting ones. The largest concordant species tree includes 77 of the QfO reference organisms at the most. Results are summarized in the form of a consensus ToL (http://swisstree.vital-it.ch/species_tree) that can serve different benchmarking purposes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This thesis deals with combinatorics, order theory and descriptive set theory. The first contribution is to the theory of well-quasi-orders (wqo) and better-quasi-orders (bqo). The main result is the proof of a conjecture made by Maurice Pouzet in 1978 his thèse d'état which states that any wqo whose ideal completion remainder is bqo is actually bqo. Our proof relies on new results with both a combinatorial and a topological flavour concerning maps from a front into a compact metric space. The second contribution is of a more applied nature and deals with topological spaces. We define a quasi-order on the subsets of every second countable To topological space in a way that generalises the Wadge quasi-order on the Baire space, while extending its nice properties to virtually all these topological spaces. The Wadge quasi-order of reducibility by continuous functions is wqo on Borei subsets of the Baire space, this quasi-order is however far less satisfactory for other important topological spaces such as the real line, as Hertling, Ikegami and Schlicht notably observed. Some authors have therefore studied reducibility with respect to some classes of discontinuous functions to remedy this situation. We propose instead to keep continuity but to weaken the notion of function to that of relation. Using the notion of admissible representation studied in Type-2 theory of effectivity, we define the quasi-order of reducibility by relatively continuous relations. We show that this quasi-order both refines the classical hierarchies of complexity and is wqo on the Borei subsets of virtually every second countable To space - including every (quasi-)Polish space. -- Cette thèse se situe dans les domaines de la combinatoire, de la théorie des ordres et de la théorie descriptive. La première contribution concerne la théorie des bons quasi-ordres (wqo) et des meilleurs quasi-ordres (bqo). Le résultat principal est la preuve d'une conjecture, énoncée par Pouzet en 1978 dans sa thèse d'état, qui établit que tout wqo dont l'ensemble des idéaux non principaux ordonnés par inclusion forme un bqo est alors lui-même un bqo. La preuve repose sur de nouveaux résultats, qui allient la combinatoire et la topologie, au sujet des fonctions d'un front vers un espace métrique compact. La seconde contribution de cette thèse traite de la complexité topologique dans le cadre des espaces To à base dénombrable. Dans le cas de l'espace de Baire, le quasi-ordre de Wadge est un wqo sur les sous-ensembles Boréliens qui a suscité énormément d'intérêt. Cependant cette relation de réduction par fonctions continues s'avère bien moins satisfaisante pour d'autres espaces d'importance tels que la droite réelle, comme l'ont fait notamment remarquer Hertling, Schlicht et Ikegami. Nous proposons de conserver la continuité et d'affaiblir la notion de fonction pour celle de relation. Pour ce faire, nous utilisons la notion de représentation admissible étudiée en « Type-2 theory of effectivity » initiée par Weihrauch. Nous introduisons alors le quasi-ordre de réduction par relations relativement continues et montrons que celui-ci à la fois raffine les hiérarchies classiques de complexité topologique et forme un wqo sur les sous-ensembles Boréliens de chaque espace quasi-Polonais.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The human connectome represents a network map of the brain's wiring diagram and the pattern into which its connections are organized is thought to play an important role in cognitive function. The generative rules that shape the topology of the human connectome remain incompletely understood. Earlier work in model organisms has suggested that wiring rules based on geometric relationships (distance) can account for many but likely not all topological features. Here we systematically explore a family of generative models of the human connectome that yield synthetic networks designed according to different wiring rules combining geometric and a broad range of topological factors. We find that a combination of geometric constraints with a homophilic attachment mechanism can create synthetic networks that closely match many topological characteristics of individual human connectomes, including features that were not included in the optimization of the generative model itself. We use these models to investigate a lifespan dataset and show that, with age, the model parameters undergo progressive changes, suggesting a rebalancing of the generative factors underlying the connectome across the lifespan.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

As increasingly large molecular data sets are collected for phylogenomics, the conflicting phylogenetic signal among gene trees poses challenges to resolve some difficult nodes of the Tree of Life. Among these nodes, the phylogenetic position of the honey bees (Apini) within the corbiculate bee group remains controversial, despite its considerable importance for understanding the emergence and maintenance of eusociality. Here, we show that this controversy stems in part from pervasive phylogenetic conflicts among GC-rich gene trees. GC-rich genes typically have a high nucleotidic heterogeneity among species, which can induce topological conflicts among gene trees. When retaining only the most GC-homogeneous genes or using a nonhomogeneous model of sequence evolution, our analyses reveal a monophyletic group of the three lineages with a eusocial lifestyle (honey bees, bumble bees, and stingless bees). These phylogenetic relationships strongly suggest a single origin of eusociality in the corbiculate bees, with no reversal to solitary living in this group. To accurately reconstruct other important evolutionary steps across the Tree of Life, we suggest removing GC-rich and GC-heterogeneous genes from large phylogenomic data sets. Interpreted as a consequence of genome-wide variations in recombination rates, this GC effect can affect all taxa featuring GC-biased gene conversion, which is common in eukaryotes.