212 resultados para Toluidine blue test
Resumo:
Phosphorylation of a polypeptide of approximately 120 kD in pea (Pisum sativum L.) plasma membranes in response to blue light has been shown to be involved in phototropic curvature, but the relationship of this protein to the kinase and photoreceptor acting upon it is uncertain. Using two-phase aqueous partitioning to isolate right-side-out plasma membrane vesicles, we have obtained evidence suggesting that the photoreceptor, kinase, and substrate are localized to the plasma membrane fraction. Latent phosphorylation accessible through Triton X-100 or freeze/thaw treatments of purified plasma membrane vesicles indicates that at least the kinase moiety is present on the internal face of the plasma membrane. Effects of solubilization of vesicles on fluence-response characteristics and on phosphorylation levels provide evidence that the receptor, kinase, and protein substrate are present together in individual mixed detergent micelles, either as a stable complex or as domains of a single polypeptide. In vivo blue-light irradiation results in a small but significant decrease in mobility of the 120-kD phosphorylated protein on sodium dodecylsulfate gel electrophoresis. This mobility shift is evident on Coomassie-stained gels and on western blots probed with polyclonal antibodies raised against the 120-kD protein. Among the plasma membrane proteins bound to the reactive nucleotide analog fluorosulfonylbenzoyladenine (FSBA), a distinct protein band at 120 kD can be detected on blots probed with anti-FSBA antibodies. This band exhibits an in vivo light-dependent mobility shift identical to that observed for the protein band and antibodies specific for the 120-kD protein, implying that the 120-kD protein has an integral nucleotide binding site and consistent with the possibility that the substrate protein is also a kinase.
Resumo:
SETTING: A 950 bed teaching hospital in Switzerland. AIM: To describe the result of a contact investigation among health care workers (HCW) and patients after exposure to a physician with smear-positive pulmonary tuberculosis in a hospital setting using standard tuberculin skin tests (TST) and Interferon-gamma release assay (IGRA). METHOD: HCW with a negative or unknown TST at hiring had a TST two weeks after the last contact with the index case (T0), repeated six weeks later if negative (T6). All exposed HCW had a T-SPOT.TB at T0 and T6. Exposed patients had a TST six weeks after the last contact, and a T-SPOT.TB if the TST was positive. RESULTS: Among 101 HCW, 17/73 (22%) had a positive TST at T0. TST was repeated in 50 at T6 and converted from negative to positive in eight (16%). Twelve HCW had a positive T-SPOT.TB at T0 and ten converted from negative to positive at T6. Seven HCW with a positive T-SPOT.TB reverted to negative at T6 or at later controls, most of them with test values close to the cut-off. Among 27 exposed patients tested at six weeks, ten had a positive TST, five of them confirmed by a positive T-SPOT.TB. CONCLUSIONS: HCW tested twice after exposure to a case of smear-positive pulmonary TB demonstrated a possible conversion in 10% with T-SPOT and 16% with TST. Some T-SPOT.TB reverted from positive to negative during the follow-up, mostly tests with a value close to the cut-off. Due to the variability of the test results, it seems advisable to repeat the test with values close to the cut-off before diagnosing the presence of a tuberculous infection.
Resumo:
PURPOSE: In this study, the authors compared the cardiorespiratory responses between the 30-15 Intermittent Ice Test (30-15(IIT)) and the 30-15 Intermittent Fitness Test (30-15(IFT)) in semiprofessional hockey players. METHODS: Ten players (age 24 ± 6 y) from a Swiss League B team performed the 30-15(IIT) and 30-15(IFT) in random order (13 ± 4 d between trials). Cardiorespiratory variables were measured with a portable gas analyzer. Ventilatory threshold (VT), respiratory-compensation point (RCP), and maximal speeds were measured for both tests. Peak blood lactate ([La(peak)]) was measured at 1 min postexercise. RESULTS: Compared with 30-15(IFT), 30-15(IIT) peak heart rate (HR(peak); mean ± SD 185 ± 7 vs 189 ± 10 beats/min, P = .02) and peak oxygen consumption (VO(2peak)); 60 ± 7 vs 62.7 ± 4 mL/min/kg, P = .02) were lower, whereas [La(peak)] was higher (10.9 ± 1 vs 8.6 ± 2 mmol/L, P < .01) for the 30-15(IIT). VT and RCP values during the 30-15(IIT) and 30-15(IFT) were similar for %HR(peak) (76.3% ± 5% vs 75.5% ± 3%, P = .53, and 90.6% ± 3% vs. 89.8% ± 3%, P = .45) and % VO(2peak) (62.3% ± 5% vs 64.2% ± 6%, P = .46, and 85.9% ± 5% vs 84.0% ± 7%, P = .33). VO(2peak ))(r = .93, P < .001), HR(peak) (r = .86, P = .001), and final velocities (r = .69, P = .029) were all largely to almost perfectly correlated. CONCLUSIONS: Despite slightly lower maximal cardiorespiratory responses than in the field-running version of the test, the on-ice 30-15(IIT) is of practical interest since it is a specific maximal test with a higher anaerobic component.
Resumo:
Toxicity of chemical pollutants in aquatic environments is often addressed by assays that inquire reproductive inhibition of test microorganisms, such as algae or bacteria. Those tests, however, assess growth of populations as a whole via macroscopic methods such as culture turbidity or colony-forming units. Here we use flow cytometry to interrogate the fate of individual cells in low-density populations of the bacterium Pseudomonas fluorescens SV3 exposed or not under oligotrophic conditions to a number of common pollutants, some of which derive from oil contamination. Cells were stained at regular time intervals during the exposure assay with fluorescent dyes that detect membrane injury (i.e., live-dead assay). Reduction of population growth rates was observed upon toxicant insult and depended on the type of toxicant. Modeling and cell staining indicate that population growth rate decrease is a combined effect of an increased number of injured cells that may or may not multiply, and live cells dividing at normal growth rates. The oligotrophic assay concept presented here could be a useful complement for existing biomarker assays in compliance with new regulations on chemical effect studies or, more specifically, for judging recovery after exposure to fluctuating toxicant conditions.
Resumo:
BACKGROUND: Major depression, although frequent in primary care, is commonly hidden behind multiple physical complaints that are often the first and only reason for patient consultation. Major depression can be screened by two validated questions that are easier to use in primary care than the full DSM-IV criteria. A third question, called the "help" question, improves the specificity without apparently decreasing the sensitivity of this screening procedure. We validated the abbreviated screening procedure for major depression with and without the "help" question in primary care patients managed for a physical complaint. METHODS: This diagnostic accuracy study used data from a cohort study called SODA (for SOmatisation Depression Anxiety ) conducted by 24 general practitioners (GPs) in western Switzerland that included patients over 18 years of age with at least one physical complaint at index consultation. Major depression was identified with the full Patient Health Questionnaire. GPs were asked to screen patients for major depression with the three screening questions one year after inclusion. RESULTS: Out of 937 patients with at least one physical complaint, 751 were eligible one year after index consultation. Major depression was diagnosed in 69/724 (9.5%) patients. The sensitivity and specificity of the two-question method alone were 91.3% (95% confidence interval 81.4-96.4%) and 65.0% (95% confidence interval 61.2-68.6%), respectively. Adding the "help" question decreased the sensitivity (59.4% ; 95% confidence interval 47.0-70.9%) but improved the specificity (88.2% ; 95% confidence interval 85.4-90.5%) of the three-question method. CONCLUSIONS: The use of two screening questions for major depression was associated with high sensitivity and low specificity in primary care patients presenting a physical complaint. Adding the "help" question improved the specificity but clearly decreased the sensitivity; when using the "help" question; four out of ten patients with depression will be missed, compared to only one out of ten with the two-question method. Therefore, the "help" question is not useful as a screening question, but may help discussing management strategies.
Resumo:
This study examined the validity and reliability of a sequential "Run-Bike-Run" test (RBR) in age-group triathletes. Eight Olympic distance (OD) specialists (age 30.0 ± 2.0 years, mass 75.6 ± 1.6 kg, run VO2max 63.8 ± 1.9 ml· kg(-1)· min(-1), cycle VO2peak 56.7 ± 5.1 ml· kg(-1)· min(-1)) performed four trials over 10 days. Trial 1 (TRVO2max) was an incremental treadmill running test. Trials 2 and 3 (RBR1 and RBR2) involved: 1) a 7-min run at 15 km· h(-1) (R1) plus a 1-min transition to 2) cycling to fatigue (2 W· kg(-1) body mass then 30 W each 3 min); 3) 10-min cycling at 3 W· kg(-1) (Bsubmax); another 1-min transition and 4) a second 7-min run at 15 km· h(-1) (R2). Trial 4 (TT) was a 30-min cycle - 20-min run time trial. No significant differences in absolute oxygen uptake (VO2), heart rate (HR), or blood lactate concentration ([BLA]) were evidenced between RBR1 and RBR2. For all measured physiological variables, the limits of agreement were similar, and the mean differences were physiologically unimportant, between trials. Low levels of test-retest error (i.e. ICC <0.8, CV<10%) were observed for most (logged) measurements. However [BLA] post R1 (ICC 0.87, CV 25.1%), [BLA] post Bsubmax (ICC 0.99, CV 16.31) and [BLA] post R2 (ICC 0.51, CV 22.9%) were least reliable. These error ranges may help coaches detect real changes in training status over time. Moreover, RBR test variables can be used to predict discipline specific and overall TT performance. Cycle VO2peak, cycle peak power output, and the change between R1 and R2 (deltaR1R2) in [BLA] were most highly related to overall TT distance (r = 0.89, p < 0. 01; r = 0.94, p < 0.02; r = 0.86, p < 0.05, respectively). The percentage of TR VO2max at 15 km· h(-1), and deltaR1R2 HR, were also related to run TT distance (r = -0.83 and 0.86, both p < 0.05).