93 resultados para Tandem repeat
Resumo:
Background: About 80% of patients with Crohn's disease (CD) require bowel resection and up to 65% will undergo a second resection within 10 years. This study reports clinical risk factors for resection surgery (RS) and repeat RS. Methods: Retrospective cohort study, using data from patients included in the Swiss Inflammatory Bowel Disease Cohort. Cox regression analyses were performed to estimate rates of initial and repeated RS. Results: Out of 1,138 CD cohort patients, 417 (36.6%) had already undergone RS at the time of inclusion. Kaplan-Meier curves showed that the probability of being free of RS was 65% after 10 years, 42% after 20 years, and 23% after 40 years. Perianal involvement (PA) did not modify this probability to a significant extent. The main adjusted risk factors for RS were smoking at diagnosis (hazard ratio (HR) = 1.33; p = 0.006), stricturing with vs. without PA (HR = 4.91 vs. 4.11; p < 0.001) or penetrating disease with vs. without PA (HR = 3.53 vs. 4.58; p < 0.001). The risk factor for repeat RS was penetrating disease with vs. without PA (HR = 3.17 vs. 2.24; p < 0.05). Conclusion: The risk of RS was confirmed to be very high for CD in our cohort. Smoking status at diagnosis, but mostly penetrating and stricturing diseases increase the risk of RS.
Resumo:
A selective and sensitive method was developed for the simultaneous quantification of seven typical antipsychotic drugs (cis-chlorprothixene, flupentixol, haloperidol, levomepromazine, pipamperone, promazine and zuclopenthixol) in human plasma. Ultra-high performance liquid chromatography (UHPLC) was used for complete separation of the compounds in less than 4.5min on an Acquity UPLC BEH C18 column (2.1mm×50mm; 1.7μm), with a gradient elution of ammonium formate buffer pH 4.0 and acetonitrile at a flow rate of 400μl/min. Detection was performed on a tandem quadrupole mass spectrometer (MS/MS) equipped with an electrospray ionization interface. A simple protein precipitation procedure with acetonitrile was used for sample preparation. Thanks to the use of stable isotope-labeled internal standards for all analytes, internal standard-normalized matrix effects were in the range of 92-108%. The method was fully validated to cover large concentration ranges of 0.2-90ng/ml for haloperidol, 0.5-90ng/ml for flupentixol, 1-450ng/ml for levomepromazine, promazine and zuclopenthixol and 2-900ng/ml for cis-chlorprothixene and pipamperone. Trueness (89.1-114.8%), repeatability (1.8-9.9%), intermediate precision (1.9-16.3%) and accuracy profiles (<30%) were in accordance with the latest international recommendations. The method was successfully used in our laboratory for routine quantification of more than 500 patient plasma samples for therapeutic drug monitoring. To the best of our knowledge, this is the first UHPLC-MS/MS method for the quantification of the studied drugs with a sample preparation based on protein precipitation.
Resumo:
Solid-phase extraction (SPE) in tandem with dispersive liquid-liquid microextraction (DLLME) has been developed for the determination of mononitrotoluenes (MNTs) in several aquatic samples using gas chromatography-flame ionization (GC-FID) detection system. In the hyphenated SPE-DLLME, initially MNTs were extracted from a large volume of aqueous samples (100 mL) into a 500-mg octadecyl silane (C(18) ) sorbent. After the elution of analytes from the sorbent with acetonitrile, the obtained solution was put under the DLLME procedure, so that the extra preconcentration factors could be achieved. The parameters influencing the extraction efficiency such as breakthrough volume, type and volume of the elution solvent (disperser solvent) and extracting solvent, as well as the salt addition, were studied and optimized. The calibration curves were linear in the range of 0.5-500 μg/L and the limit of detection for all analytes was found to be 0.2 μg/L. The relative standard deviations (for 0.75 μg/L of MNTs) without internal standard varied from 2.0 to 6.4% (n=5). The relative recoveries of the well, river and sea water samples, spiked at the concentration level of 0.75 μg/L of the analytes, were in the range of 85-118%.
Resumo:
Glutamate cysteine ligase (GCL) catalyzes the rate-limiting step in the de novo synthesis of glutathione (GSH). The catalytic subunit (GCLC) of GCL contains a GAG trinucleotide-repeat (TNR) polymorphism within the 5'-untranslated region (5'-UTR) that has been associated with various human disorders. Although several studies suggest that this variation influences GSH content, its implication for GCLC expression remains unknown. To better characterize its functional significance, we performed reporter gene assays with constructs containing the complete GCLC 5'-UTR upstream of a luciferase gene. Transfection of these vectors into various human cell lines did not reveal any significant differences between 7, 8, 9, or 10 GAG repeats, under either basal or oxidative stress conditions. To correlate these results with the previously described down-regulation induced by the C-129T GCLC promoter polymorphism, combinations of both variations were tested. Interestingly, the -129T allele down-regulates gene expression when combined with 7 GAG but not with 8, 9, or 10 GAG TNRs. This observation was confirmed in primary fibroblast cells, in which the combination of GAG TNR 7/7 and -129C/T genotypes decreased the GCLC protein level. These results provide evidence that interaction of the two variations can efficiently impair GCLC expression and thus suggest its involvement in the pathogenesis of diseases related to GSH metabolism.
Resumo:
There is increasing evidence that the clinical efficacy of tamoxifen, the first and most widely used targeted therapy for estrogen-sensitive breast cancer, depends on the formation of the active metabolites 4-hydroxy-tamoxifen and 4-hydroxy-N-desmethyl-tamoxifen (endoxifen). Large inter-individual variability in endoxifen plasma concentrations has been observed and related both to genetic and environmental (i.e. drug-induced) factors altering CYP450s metabolizing enzymes activity. In this context, we have developed an ultra performance liquid chromatography-tandem mass spectrometry method (UPLC-MS/MS) requiring 100 μL of plasma for the quantification of tamoxifen and three of its major metabolites in breast cancer patients. Plasma is purified by a combination of protein precipitation, evaporation at room temperature under nitrogen, and reconstitution in methanol/20 mM ammonium formate 1:1 (v/v), adjusted to pH 2.9 with formic acid. Reverse-phase chromatographic separation of tamoxifen, N-desmethyl-tamoxifen, 4-hydroxy-tamoxifen and 4-hydroxy-N-desmethyl-tamoxifen is performed within 13 min using elution with a gradient of 10 mM ammonium formate and acetonitrile, both containing 0.1% formic acid. Analytes quantification, using matrix-matched calibration samples spiked with their respective deuterated internal standards, is performed by electrospray ionization-triple quadrupole mass spectrometry using selected reaction monitoring detection in the positive mode. The method was validated according to FDA recommendations, including assessment of relative matrix effects variability, as well as tamoxifen and metabolites short-term stability in plasma and whole blood. The method is precise (inter-day CV%: 2.5-7.8%), accurate (-1.4 to +5.8%) and sensitive (lower limits of quantification comprised between 0.4 and 2.0 ng/mL). Application of this method to patients' samples has made possible the identification of two further metabolites, 4'-hydroxy-tamoxifen and 4'-hydroxy-N-desmethyl-tamoxifen, described for the first time in breast cancer patients. This UPLC-MS/MS assay is currently applied for monitoring plasma levels of tamoxifen and its metabolites in breast cancer patients within the frame of a clinical trial aiming to assess the impact of dose increase on tamoxifen and endoxifen exposure.
Resumo:
Introduction: Oseltamivir phosphate (OP), the prodrug of oseltamivir carboxylate (OC; active metabolite), is marketed since 10 years for the treatment of seasonal influenza flu. It has recently received renewed attention because of the threat of avian flu H5N1 in 2006-7 and the 2009-10 A/H1N1 pandemic. However, relatively few studies have been published on OP and OC clinical pharmacokinetics. The disposition of OC and the dosage adaptation of OP in specific populations, such as young children or patients undergoing extrarenal epuration, have also received poor attention. An analytical method was thus developed to assess OP and OC plasma concentrations in patients receiving OP and presenting with comorbidities or requiring intensive care. Methods: A high performance liquid chromatography coupled to tandem mass spectrometry method (HPLC-MS/MS) requiring 100-µL aliquot of plasma for quantification within 6 min of OP and OC was developed. A combination of protein precipitation with acetonitrile, followed by dilution of supernant in suitable buffered solvent was used as an extraction procedure. After reverse phase chromatographic separation, quantification was performed by electro-spray ionization-triple quadrupole mass spectrometry. Deuterated isotopic compounds of OP and OC were used as internal standards. Results: The method is sensitive (lower limit of quantification: 5 ng/mL for OP and OC), accurate (intra-/inter-assay bias for OP and OC: 8.5%/5.5% and 3.7/0.7%, respectively) and precise (intra-/inter-assay CV%: 5.2%/6.5% and 6.3%/9.2%, respectively) over the clinically relevant concentration range (upper limits of quantification 5000 ng/mL). Of importance, OP, as in other previous reports, was found not to be stable ex vivo in plasma on standard anticoagulants (i.e. EDTA, heparin or citrate). This poor stability of OP has been prevented by collecting blood samples on commercial fluoride/oxalate tubes. Conclusions: This new simple, rapid and robust HPLC-MS/MS assay for quantification of OP and OC plasma concentrations offers an efficient tool for concentration monitoring of OC. Its exposure can probably be controlled with sufficient accuracy by thorough dosage adjustment according to patient characteristics (e.g. renal clearance). The usefulness of systematic therapeutic drug monitoring in patients appears therefore questionable. However, pharmacokinetic studies are still needed to extend knowledge to particular subgroups of patients or dosage regimens.
Resumo:
To reliably differentiate among Staphylococcus aureus isolates we recently developed the Double Locus Sequence Typing (DLST) based on the analysis of partial sequences of clfB and spa genes. This method is highly discriminatory and gives unambiguous definition of types. The highly clonal population structure of S. aureus suggests that isolates with identical clfB or spa alleles belong to the same clonal complex (CC) defined by Multi-Locus Sequence Typing (MLST). To test this hypothesis as well as to investigate putative intra-CC genetic structure, we analyzed a total of 289 isolates (186 MSSA and 103 MRSA) with DLST-, spa- and MLST-typing. Among the 289 strains, 242 were clustered into 7 major MLST CCs, 40 into minor CCs and 7 were not grouped into CCs. A total of 205 DLST- and 129 spa-types were observed. With one exception, all DLST-clfB, DLST-spa and spa-type alleles were segregated into CCs. DLST-types sharing an identical allele (clfB or spa) were clustered using eBURST. Except for one strain, all isolates from each DLST cluster belonged to the same CC. However, using both DLST- and spa-typing we were not able to disclose a clear intra-CC structure. Nevertheless, the high diversity of these loci confirmed that they are good markers for local epidemiological investigations.
Resumo:
New directly acting antivirals (DAAs) that inhibit hepatitis C virus (HCV) replication are increasingly used for the treatment of chronic hepatitis C. A marked pharmacokinetic variability and a high potential for drug-drug interactions between DAAs and numerous drug classes have been identified. In addition, ribavirin (RBV), commonly associated with hemolytic anemia, often requires dose adjustment, advocating for therapeutic drug monitoring (TDM) in patients under combined antiviral therapy. However, an assay for the simultaneous analysis of RBV and DAAs constitutes an analytical challenge because of the large differences in polarity among these drugs, ranging from hydrophilic (RBV) to highly lipophilic (telaprevir [TVR]). Moreover, TVR is characterized by erratic behavior on standard octadecyl-based reversed-phase column chromatography and must be separated from VRT-127394, its inactive C-21 epimer metabolite. We have developed a convenient assay employing simple plasma protein precipitation, followed by high-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS) for the simultaneous determination of levels of RBV, boceprevir, and TVR, as well as its metabolite VRT-127394, in plasma. This new, simple, rapid, and robust HPLC-MS/MS assay offers an efficient method of real-time TDM aimed at maximizing efficacy while minimizing the toxicity of antiviral therapy.
Resumo:
The process of DNA strand exchange during general genetic recombination is initiated within protein-stabilized synaptic filaments containing homologous regions of interacting DNA molecules. The RecA protein in bacteria and its analogs in eukaryotic organisms start this process by forming helical filamentous complexes on single-stranded or partially single-stranded DNA molecules. These complexes then progressively bind homologous double-stranded DNA molecules so that homologous regions of single- and double-stranded DNA molecules become aligned in register while presumably winding around common axis. The topological assay presented herein allows us to conclude that in synaptic complexes containing homologous single- and double-stranded DNA molecules, all three DNA strands have a helicity of approximately 19 nt per turn.
Resumo:
A repeated DNA element in Xenopus laevis is described that is present in about 7500 copies dispersed throughout the genome. It was first identified in the 5' flanking region of one vitellogenin gene and was therefore named the Vi element. Seven copies are present within the vitellogenin gene region, three of them within introns of the genes A1, A2 and B2, and the other four copies in the gene flanking regions. Four of these copies have been sequenced. The Vi element is bounded by a well-conserved 13 base-pair inverted repeat; in addition, it is flanked by a three base-pair direct repeat that appears to be site-specific. The length of these four copies varies from 112 to 469 base-pairs; however, sequence homology between the different copies is very high. Their structural characteristics suggest that length heterogeneity may have arisen by either unequal recombinations, deletions or tandem duplications. Altogether, the characteristics and properties of the Vi element indicate that it might represent a mobile genetic element. One of the four copies sequenced is inserted close (position -535) to the transcription initiation site of the vitellogenin gene B2 in a region otherwise showing considerable homology with the closely related gene B1. Nevertheless, the presence of the Vi element does not seem to influence significantly the estrogen-controlled expression of gene B2. In addition, three alleles of this gene created by length polymorphism in intron 3 and in the Vi element inserted near the transcription initiation site are described.
Resumo:
One hundred de novo multiple myeloma patients with t(4;14) treated with double intensive therapy according to IFM99 protocols were retrospectively analyzed. The median overall survival (OS) and event-free survival (EFS) were 41.4 and 21 months, respectively, as compared to 65 and 37 for patients included in the IFM99 trials without t(4;14) (P<10(-7)). We identified a subgroup of patients presenting at diagnosis with both low beta(2)-microglobulin <4 mg/l and high hemoglobin (Hb) >/=10 g/l (46% of the cases) with a median OS of 54.6 months and a median EFS of 26 months, respectively, which benefits from high-dose therapy (HDT); conversely patients with one or both adverse prognostic factor (high beta(2)-microglobulin and/or low Hb) had a poor outcome. The achievement of either complete response or very good partial response after HDT was also a powerful independent prognostic factor for both OS and EFS.
Resumo:
Carbapenemases should be accurately and rapidly detected, given their possible epidemiological spread and their impact on treatment options. Here, we developed a simple, easy and rapid matrix-assisted laser desorption ionization-time of flight (MALDI-TOF)-based assay to detect carbapenemases and compared this innovative test with four other diagnostic approaches on 47 clinical isolates. Tandem mass spectrometry (MS-MS) was also used to determine accurately the amount of antibiotic present in the supernatant after 1 h of incubation and both MALDI-TOF and MS-MS approaches exhibited a 100% sensitivity and a 100% specificity. By comparison, molecular genetic techniques (Check-MDR Carba PCR and Check-MDR CT103 microarray) showed a 90.5% sensitivity and a 100% specificity, as two strains of Aeromonas were not detected because their chromosomal carbapenemase is not targeted by probes used in both kits. Altogether, this innovative MALDI-TOF-based approach that uses a stable 10-μg disk of ertapenem was highly efficient in detecting carbapenemase, with a sensitivity higher than that of PCR and microarray.
Resumo:
A sensitive and selective ultra-high performance liquid chromatography (UHPLC) tandem mass spectrometry (MS/MS) method was developed for the fast quantification of ten psychotropic drugs and metabolites in human plasma for the needs of our laboratory (amisulpride, asenapine, desmethyl-mirtazapine, iloperidone, mirtazapine, norquetiapine, olanzapine, paliperidone, quetiapine and risperidone). Stable isotope-labeled internal standards were used for all analytes, to compensate for the global method variability, including extraction and ionization variations. Sample preparation was performed by generic protein precipitation with acetonitrile. Chromatographic separation was achieved in less than 3.0min on an Acquity UPLC BEH Shield RP18 column (2.1mm×50mm; 1.7μm), using a gradient elution of 10mM ammonium formate buffer pH 3.0 and acetonitrile at a flow rate of 0.4ml/min. The compounds were quantified on a tandem quadrupole mass spectrometer operating in positive electrospray ionization mode, using multiple reaction monitoring. The method was fully validated according to the latest recommendations of international guidelines. Eight point calibration curves were used to cover a large concentration range 0.5-200ng/ml for asenapine, desmethyl-mirtazapine, iloperidone, mirtazapine, olanzapine, paliperidone and risperidone, and 1-1500ng/ml for amisulpride, norquetiapine and quetiapine. Good quantitative performances were achieved in terms of trueness (93.1-111.2%), repeatability (1.3-8.6%) and intermediate precision (1.8-11.5%). Internal standard-normalized matrix effects ranged between 95 and 105%, with a variability never exceeding 6%. The accuracy profiles (total error) were included in the acceptance limits of ±30% for biological samples. This method is therefore suitable for both therapeutic drug monitoring and pharmacokinetic studies.