356 resultados para TUMOR NECROSIS FACTOR
Resumo:
Metadherin (MTDH), the newly discovered gene, is overexpressed in more than 40% of breast cancers. Recent studies have revealed that MTDH favors an oncogenic course and chemoresistance. With a number of breast cancer cell lines and breast tumor samples, we found that the relative expression of MTDH correlated with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) sensitivity in breast cancer. In this study, we found that knockdown of endogenous MTDH cells sensitized the MDA-MB-231 cells to TRAIL-induced apoptosis both in vitro and in vivo. Conversely, stable overexpression of MTDH in MCF-7 cells enhanced cell survival with TRAIL treatment. Mechanically, MTDH down-regulated caspase-8, decreased caspase-8 recruitment into the TRAIL death-inducing signaling complex, decreased caspase-3 and poly(ADP-ribose) polymerase-2 processing, increased Bcl-2 expression, and stimulated TRAIL-induced Akt phosphorylation, without altering death receptor status. In MDA-MB-231 breast cancer cells, sensitization to TRAIL upon MTDH down-regulation was inhibited by the caspase inhibitor Z-VAD-fmk (benzyloxycarbonyl-VAD-fluoromethyl ketone), suggesting that MTDH depletion stimulates activation of caspases. In MCF-7 breast cancer cells, resistance to TRAIL upon MTDH overexpression was abrogated by depletion of Bcl-2, suggesting that MTDH-induced Bcl-2 expression contributes to TRAIL resistance. We further confirmed that MTDH may control Bcl-2 expression partly by suppressing miR-16. Collectively, our results point to a protective function of MTDH against TRAIL-induced death, whereby it inhibits the intrinsic apoptosis pathway through miR-16-mediated Bcl-2 up-regulation and the extrinsic apoptosis pathway through caspase-8 down-regulation.
Resumo:
Marked differences in the tumor uptake of a 125I-labeled monoclonal antibody (MAb) directed against carcinoembryonic antigen (CEA) were observed in 4 serially transplanted human colorectal carcinomas in nude mice. A comparative study showed that elevated values of measurable tumor vascular parameters, such as permeability, blood flow and blood volume, correlated better with high MAb tumor uptake than the concentration of target antigen in the tumor. In an attempt to modify the vascular parameters and to determine if this could increase antibody uptake by the tumor, rhTNF alpha (TNF) was injected i.t. or i.v. and antibody localization experiments were performed immediately thereafter. Results showed that the permeability of the tumor vessels increased 8 to 10 fold 1 hr after i.t. injection of TNF as compared to control tumors injected with saline. Tumor uptake of 125I-labeled anti-CEA MAb, was 3 times higher 2 hr after i.v. injection and still 27% higher 22 hr later, as compared to results from controls. Intravenous injection of TNF simultaneously with the 125I-labeled anti-CEA MAb also resulted in a 2-fold increase in tumor uptake 4 hr after injection, but the increase was no longer significant 24 hr after injection. Interestingly after i.v. injection of TNF, the MAb concentration in the blood and other normal tissues, such as liver, kidneys, lungs and heart was decreased, resulting in significantly higher ratios of tumor to normal tissue. Taken together the results demonstrate that injection of TNF can increase tumor vascular permeability and improve radio-antibody uptake. This raises the possibility of increasing the radiation dose delivered by antibody to the tumor in the course of radioimmunotherapy.
Resumo:
The tumor necrosis factor (TNF) family member B cell activating factor (BAFF) binds B cells and enhances B cell receptor-triggered proliferation. We find that B cell maturation antigen (BCMA), a predicted member of the TNF receptor family expressed primarily in mature B cells, is a receptor for BAFF. Although BCMA was previously localized to the Golgi apparatus, BCMA was found to be expressed on the surface of transfected cells and tonsillar B cells. A soluble form of BCMA, which inhibited the binding of BAFF to a B cell line, induced a dramatic decrease in the number of peripheral B cells when administered in vivo. Moreover, culturing splenic cells in the presence of BAFF increased survival of a percentage of the B cells. These results are consistent with a role for BAFF in maintaining homeostasis of the B cell population.
Resumo:
Objectives: This study aims to investigate the efficacy of tumor necrosis factor-alpha blockers such as infliximab, etanercept, and adalimumab in the treatment of ankylosing spondylitis. Patients and methods: The outcome of tumor necrosis factor-alpha blocker treatment was analyzed retrospectively in 59 patients with ankylosing spondylitis who were being treated in our clinic during last nine years. The patients' Assessment of SpondyloArthritis International Society (ASAS) 20 and ASAS 40 response rates, adverse drugs effects, and treatment compliance were evaluated. Results: ASAS 20 response was achieved by 89.8% of the patients in the third month, and by 93.2% in the sixth month. ASAS 40 response was achieved by 61% of the patients in the third and sixth month. No statistically significant difference was detected between the three tumor necrosis factor-alpha blockers with regards to the ASAS 40 response rates. Mild infections, observed in 31 of the patients, were the most common side effects. Serious side effect was observed in only one patient. The number of patients who withdrew from the treatment for various reasons was six.
Resumo:
The most promising developments in the field of isolated limb perfusion have centred around the use of the recombinant cytokine tumour necrosis factor-alpha (rTNF-alpha) in combination with melphalan. While the results of clinical trials are impressive, the exact antitumour mechanisms of rTNF-alpha and its role in combination with melphalan remain unclear. Our aim was to study the antitumour activity of human rTNF-alpha with or without the combination of melphalan in a nude mouse human melanoma xenograft system. In a first attempt to define the maximal tolerated single dose of rTNF-alpha in this setting, 15 animals were exposed to increasing doses of rTNF-alpha (60-2500 microg/kg intraperitoneally). All but one animal survived and tumour growth was not influenced by these single dose applications of rTNF-alpha even at the very high doses. Anti-tumour activity of repeated application of melphalan (three times 9 mg/kg in group 2 and three times 6 mg/kg in group 3), of rTNF-alpha alone (nine doses of 50 microg/kg in group 4), and of rTNF-alpha in combination with melphalan (nine doses of 50 microg/kg rTNF-alpha and three times 6 mg/kg melphalan in group 5) was further compared with non-treated animals (group 1). Tumour growth was significantly inhibited in all animals treated with melphalan (group 2, 3 and 5), but was not decreased in animals treated with rTNF-alpha alone (group 4). Mean final tumour volumes and mean tumour weight were not different in group 2 (789 +/- 836 mm3, 0.38 +/- 0.20 g), group 3 (1173 +/- 591 mm3, 0.55 +/- 0.29 g) and group 5 (230 +/- 632 mm3, 0.37 +/- 0.29 g), but significant lower than group 1 (3156 +/- 1512 mm3, 2.35 +/- 0.90 g) and group 4 (3228 +/- 1990 mm3, 2.00 +/- 1.16 g). There were no significant differences between high and low dose melphalan treatment and between melphalan treatment in combination with rTNF-alpha. Histological examination did not show differences between treated and non-treated animals besides slightly inhibited mitotic activities of tumour cells in melphalan-treated animals. While tumour growth of human xenotransplanted melanoma in nude mice could be inhibited by melphalan, we failed to demonstrate any antitumour effect of rTNF-alpha. The combination of melphalan and rTNF-alpha did not enhance the antiproliferative effect of melphalan alone. Human xenotransplanted tumours on nude mice might not be the ideal experimental setting for studies of potential direct antineoplastic activity of rTNF-alpha, and these results support the concept that TNF-alpha exerts its antitumour activity indirectly, possibly by impairing the tumour vasculature and by activating the immune system.
Resumo:
Nitric oxide (NO) has been shown to exert cytotoxic effects on tumor cells. We have reported that EC219 cells, a rat-brain-microvessel-derived endothelial cell line, produced NO through cytokine-inducible NO synthase (iNOS), the induction of which was significantly decreased by (a) soluble factor(s) secreted by DHD/PROb, an invasive sub-clone of a rat colon-carcinoma cell line. In this study, the DHD/PROb cell-derived NO-inhibitory factor was characterized. Northern-blot analysis demonstrated that the induction of iNOS mRNA in cytokine-activated EC219 cells was decreased by PROb-cell-conditioned medium. When DHD/PROb cell supernatant was fractionated by affinity chromatography using Con A-Sepharose or heparin-Sepharose, the NO-inhibitory activity was found only in Con A-unbound or heparin-unbound fractions, respectively, indicating that the PROb-derived inhibitory factor was likely to be a non-glycosylated and non-heparin-binding molecule. Pre-incubation of DHD/PROb-cell supernatant with anti-TGF-beta neutralizing antibody completely blocked the DHD/PROb-derived inhibition of NO production by EC219 cells. Addition of exogenous TGF-beta 1 dose-dependently inhibited NO release by EC219 cells. The presence of active TGF-beta in the DHD/PROb cell supernatant was demonstrated using a growth-inhibition assay. Moreover, heat treatment of medium conditioned by the less invasive DHD/REGb cells, which constitutively secreted very low levels of active TGF-beta, increased both TGF-beta activity and the ability to inhibit NO production in EC219 cells. Thus, DHD/PROb colon-carcinoma cells inhibited NO production in EC219 cells by secreting a factor identical or very similar to TGF-beta.
Resumo:
BACKGROUND: Patients with rheumatoid arthritis (RA) with an inadequate response to TNF antagonists (aTNFs) may switch to an alternative aTNF or start treatment from a different class of drugs, such as rituximab (RTX). It remains unclear in which clinical settings these therapeutic strategies offer most benefit. OBJECTIVE: To analyse the effectiveness of RTX versus alternative aTNFs on RA disease activity in different subgroups of patients. METHODS: A prospective cohort study of patients with RA who discontinued at least one aTNF and subsequently received either RTX or an alternative aTNF, nested within the Swiss RA registry (SCQM-RA) was carried out. The primary outcome, longitudinal improvement in 28-joint count Disease Activity Score (DAS28), was analysed using multivariate regression models for longitudinal data and adjusted for potential confounders. RESULTS: Of the 318 patients with RA included; 155 received RTX and 163 received an alternative aTNF. The relative benefit of RTX varied with the type of prior aTNF failure: when the motive for switching was ineffectiveness to previous aTNFs, the longitudinal improvement in DAS28 was significantly better with RTX than with an alternative aTNF (p = 0.03; at 6 months, -1.34 (95% CI -1.54 to -1.15) vs -0.93 (95% CI -1.28 to -0.59), respectively). When the motive for switching was other causes, the longitudinal improvement in DAS28 was similar for RTX and alternative aTNFs (p = 0.40). These results were not significantly modified by the number of previous aTNF failures, the type of aTNF switches, or the presence of co-treatment with a disease-modifying antirheumatic drug. CONCLUSION: This observational study suggests that in patients with RA who have stopped a previous aTNF treatment because of ineffectiveness changing to RTX is more effective than switching to an alternative aTNF.
Resumo:
The cytokine macrophage migration inhibitory factor (MIF) is an important component of the early proinflammatory response of the innate immune system. However, the antimicrobial defense mechanisms mediated by MIF remain fairly mysterious. In the present study, we examined whether MIF controls bacterial uptake and clearance by professional phagocytes, using wild-type and MIF-deficient macrophages. MIF deficiency did not affect bacterial phagocytosis, but it strongly impaired the killing of gram-negative bacteria by macrophages and host defenses against gram-negative bacterial infection, as shown by increased mortality in a Klebsiella pneumonia model. Consistent with MIF's regulatory role of Toll-like 4 expression in macrophages, MIF-deficient cells stimulated with lipopolysaccharide or Escherichia coli exhibited reduced nuclear factor κB activity and tumor necrosis factor (TNF) production. Addition of recombinant MIF or TNF corrected the killing defect of MIF-deficient macrophages. Together, these data show that MIF is a key mediator of host responses against gram-negative bacteria, acting in part via a modulation of bacterial killing by macrophages.
Resumo:
Synthetic inhibitor of apoptosis (IAP) antagonists induce degradation of IAP proteins such as cellular IAP1 (cIAP1), activate nuclear factor kappaB (NF-kappaB) signaling, and sensitize cells to tumor necrosis factor alpha (TNFalpha). The physiological relevance of these discoveries to cIAP1 function remains undetermined. We show that upon ligand binding, the TNF superfamily receptor FN14 recruits a cIAP1-Tnf receptor-associated factor 2 (TRAF2) complex. Unlike IAP antagonists that cause rapid proteasomal degradation of cIAP1, signaling by FN14 promotes the lysosomal degradation of cIAP1-TRAF2 in a cIAP1-dependent manner. TNF-like weak inducer of apoptosis (TWEAK)/FN14 signaling nevertheless promotes the same noncanonical NF-kappaB signaling elicited by IAP antagonists and, in sensitive cells, the same autocrine TNFalpha-induced death occurs. TWEAK-induced loss of the cIAP1-TRAF2 complex sensitizes immortalized and minimally passaged tumor cells to TNFalpha-induced death, whereas primary cells remain resistant. Conversely, cIAP1-TRAF2 complex overexpression limits FN14 signaling and protects tumor cells from TWEAK-induced TNFalpha sensitization. Lysosomal degradation of cIAP1-TRAF2 by TWEAK/FN14 therefore critically alters the balance of life/death signals emanating from TNF-R1 in immortalized cells.
Resumo:
Human B cell-activating factor (BAFF) induces mouse surface IgM+ B cells of the immature type from bone marrow and of the immature types 1 and 2 from spleen, as well as of the mature type from spleen to increased longevity in tissue culture. BAFF does so polyclonally and without inducing proliferation in any of these B cell subpopulations. BAFF induces phenotypic and functional maturation of immature to mature B cells so that all immature cells loose C1qRp (AA4.1, 493) expression and type 1 immature cells up-regulate IgD, CD21 and CD23. Immature B cells of types 1 and 2, upon pre-incubation with BAFF, change their reactiveness to Ig-specific antibodies so that they no longer enter apoptosis but now proliferate. However, BAFF does not seem to overcome negative selection of developing immature B cells in vitro.