255 resultados para TOLL-LIKE-RECEPTOR-2


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Induction of cytotoxic CD8 T-cell responses is enhanced by the exclusive presentation of antigen through dendritic cells, and by innate stimuli, such as toll-like receptor ligands. On the basis of these 2 principles, we designed a vaccine against melanoma. Specifically, we linked the melanoma-specific Melan-A/Mart-1 peptide to virus-like nanoparticles loaded with A-type CpG, a ligand for toll-like receptor 9. Melan-A/Mart-1 peptide was cross-presented, as shown in vitro with human dendritic cells and in HLA-A2 transgenic mice. A phase I/II study in stage II-IV melanoma patients showed that the vaccine was well tolerated, and that 14/22 patients generated ex vivo detectable T-cell responses, with in part multifunctional T cells capable to degranulate and produce IFN-γ, TNF-α, and IL-2. No significant influence of the route of immunization (subcutaneous versus intradermal) nor dosing regimen (weekly versus daily clusters) could be observed. It is interesting to note that, relatively large fractions of responding specific T cells exhibited a central memory phenotype, more than what is achieved by other nonlive vaccines. We conclude that vaccination with CpG loaded virus-like nanoparticles is associated with a human CD8 T-cell response with properties of a potential long-term immune protection from the disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rapport de synthèse : Le récepteur activé par protéase de type 2 (PAR2) intervient dans l'inflammation dans divers modèles expérimentaux de maladies inflammatoires et auto-immunes, mais le mécanisme par lequel il exerce cette fonction reste mal compris. PAR2 est exprimé sur des cellules endothéliales et immunitaires et a été impliqué dans la différentiation des cellules dendritiques (DC). Avec leur rôle central dans la réponse immune, les DC pourraient jouer un rôle clef, l'activation de PAR2 à leur surface modulant la réponse immune. Des recherches précédentes ont montré que PAR2 a un effet dans le développement et la maturation des DC de moelle osseuse in vitro, ainsi que dans la promotion de la réponse immune en allergie. Dans cette étude, nous avons évalué l'impact in vivo de l'activation de PAR2 sur les DC et les cellules T dans des souris déficientes en PAR2 (KO) en utilisant un peptide agoniste spécifique du PAR2 (AP2). L'activation de PAR2 a augmenté la fréquence de DC matures dans les ganglions lymphatiques 24 heures après l'administration d'AP2 d'une manière significative. En outre, ces DC avaient une expression augmentée des molécules de co-stimulation CD86 et du complexe majeur d'histocompatibilité type 2 (MHC-II). 48 heures après l'injection d'AP2, nous avons également observé une élévation significative des lymphocytes T CD4+ et CD8+ activés, (CD44+CD62-) dans ces ganglions. Des changements dans le profil d'activation des DC et des cellules T n'ont pas été observés au niveau de a rate. L'influence de la signalisation de PAR2 sur le transport d'antigène aux ganglions lymphatiques inguinaux a été évaluée dans le contexte d'hypersensibilité retardée de type IV. Les souris KO sensibilisées par peinture de la peau avec fluorescéine isothyocyanate (FITC) afin d'induire une hypersensibilité retardée avaient un pourcentage diminué de DC FITC+ dans les ganglions lymphatiques 24 heures après l'application du FITC en comparaison avec les souris sauvages avec le même fond génétique (0.47% vs 0.95% des cellules ganglionnaires totales). En conclusion, ces résultats démontrent que la signalisation de PAR2 favorise et renforce la maturation et le transport d'antigène par des DC .vers les ganglions lymphatiques ainsi que l'activation ultérieure des lymphocytes T, et de ce fait fournissent une explication pour l'effet pro inflammatoire de PAR2 dans les modèles animaux d'inflammation. Une meilleure compréhension de ce mécanisme de modulation du système immun via PAR2 peut s'avérer particulièrement utile pour le développement des vaccins, ainsi que pour la découverte de nouvelles cibles thérapeutiques dans le contexte de l'allergie, l'auto-immunité, et les maladies inflammatoires.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In vitro, Toll-like receptors (TLR)2, 4 and 9 as well as NOD-like receptor 2 critically determine macrophage responses to Mycobacterium tuberculosis (Mtb) infection. However, in low-dose experimental murine tuberculosis, single or multiple deficiencies in TLRs 2, 4, 9 or NOD2 have little, if any, impact on early mycobacterial growth containment, granuloma formation and survival. Here, we analyzed the relevance of NALP3, one component of the danger-signaling inflammasome, for (i) Mtb-induced cytokine secretion in vitro and in vivo, (ii) restriction of Mtb replication in infected organs and (iii) granuloma formation. In the absence of functional NALP3, there was no IL-1beta and IL-18 production in Mtb-infected dendritic cells and macrophages in vitro, whereas secretion of IL-1alpha, IL-12p40 and TNF remained unaffected. After three weeks of infection, NALP3-deficient as well as IL-18-deficient mice were as capable as wildtype mice of restricting Mtb loads at a plateau level within well-differentiated granulomas. In conclusion, despite its involvement in cytokine processing, NALP3 is not essential for induction of protective immunity to Mtb.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gout is the most common form of inflammatory arthritis in the elderly. In the last two decades, both hyperuricemia and gout have increased markedly and similar trends in the epidemiology of the metabolic syndrome have been observed. Recent studies provide new insights into the transporters that handle uric acid in the kidney as well as possible links between these transporters, hyperuricemia, and hypertension. The treatment of established hyperuricemia has also seen new developments. Febuxostat and PEG-uricase are two novel treatments that have been evaluated and shown to be highly effective in the management of hyperuricemia, thus enlarging the therapeutic options available to lower uric acid levels. Monosodium urate (MSU) crystals are potent inducers of inflammation. Within the joint, they trigger a local inflammatory reaction, neutrophil recruitment, and the production of pro-inflammatory cytokines as well as other inflammatory mediators. Experimentally, the uptake of MSU crystals by monocytes involves interactions with components of the innate immune system, namely Toll-like receptor (TLR)-2, TLR-4, and CD14. Intracellularly, MSU crystals activate multiple processes that lead to the formation of the NALP-3 (NACHT, LRR, and pyrin domain-containing-3) inflammasome complex that in turn processes pro-interleukin (IL)-1 to yield mature IL-1 beta, which is then secreted. The inflammatory effects of MSU are IL-1-dependent and can be blocked by IL-1 inhibitors. These advances in the understanding of hyperuricemia and gout provide new therapeutic targets for the future.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND/AIMS: After treatment with heat-killed Propionibacterium acnes mice show dense hepatic granuloma formation. Such mice develop liver injury in an interleukin (IL)-18-dependent manner after challenge with a sublethal dose LPS. As previously shown, LPS-stimulated Kupffer cells secrete IL-18 depending on caspase-1 and Toll-like receptor (TLR)-4 but independently of its signal adaptor myeloid differentiation factor 88 (MyD88), suggesting importance of another signal adaptor TIR domain-containing adapter inducing IFN-beta (TRIF). Nalp3 inflammasome reportedly controls caspase-1 activation. Here we investigated the roles of MyD88 and TRIF in P. acnes-induced hepatic granuloma formation and LPS-induced caspase-1 activation for IL-18 release. METHODS: Mice were sequentially treated with P. acnes and LPS, and their serum IL-18 levels and liver injuries were determined by ELISA and ALT/AST measurement, respectively. Active caspase-1 in LPS-stimulated Kupffer cells was determined by Western blotting. RESULTS: Macrophage-ablated mice lacked P. acnes-induced hepatic granuloma formation and LPS-induced serum IL-18 elevation and liver injury. Myd88(-/-) Kupffer cells, but not Trif(-/-) cells, exhibited normal caspase-1 activation upon TLR4 engagement in vitro. Myd88(-/-) mice failed to develop hepatic granulomas after P. acnes treatment and liver injury induced by LPS challenge. In contrast, Trif(-/-) mice normally formed the hepatic granulomas, but could not release IL-18 or develop the liver injury. Nalp3(-/-) mice showed the same phenotypes of Trif(-/-) mice. CONCLUSIONS: Propionibacterium acnes treatment MyD88-dependently induced hepatic granuloma formation. Subsequent LPS TRIF-dependently activated caspase-1 via Nalp3 inflammasome and induced IL-18 release, eventually leading to the liver injury.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Low molecular weight dextran sulfate (DXS) has been reported to inhibit the classical, alternative pathway as well as the mannan-binding lectin pathway of the complement system. Furthermore, it acts as an endothelial cell protectant inhibiting complement-mediated endothelial cell damage. Endothelial cells are covered with a layer of heparan sulfate (HS), which is rapidly released under conditions of inflammation and tissue injury. Soluble HS induces maturation of dendritic cells (DC) via TLR4. In this study, we show the inhibitory effect of DXS on human DC maturation. DXS significantly prevents phenotypic maturation of monocyte-derived DC and peripheral myeloid DC by inhibiting the up-regulation of CD40, CD80, CD83, CD86, ICAM-1, and HLA-DR and down-regulates DC-SIGN in response to HS or exogenous TLR ligands. DXS also inhibits the functional maturation of DC as demonstrated by reduced T cell proliferation, and strongly impairs secretion of the proinflammatory mediators IL-1beta, IL-6, IL-12p70, and TNF-alpha. Exposure to DXS leads to a reduced production of the complement component C1q and a decreased phagocytic activity, whereas C3 secretion is increased. Moreover, DXS was found to inhibit phosphorylation of IkappaB-alpha and activation of NF-kappaB. These findings suggest that DXS prevents TLR-induced maturation of human DC and may therefore be a useful reagent to impede the link between innate and adaptive immunity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Macrophages are essential effector cells of innate immunity that play a pivotal role in the recognition and elimination of invasive microorganisms. Mediators released by activated macrophages orchestrate innate and adaptive immune host responses. The cytokine macrophage migration inhibitory factor (MIF) is an integral mediator of the innate immune system. Monocytes and macrophages constitutively express large amounts of MIF, which is rapidly released after exposure to bacterial toxins and cytokines. MIF exerts potent proinflammatory activities and is an important cytokine of septic shock. Recent investigations of the mechanisms by which MIF regulates innate immune responses to endotoxin and gram-negative bacteria indicate that MIF acts by modulating the expression of Toll-like receptor 4, the signal-transducing molecule of the lipopolysaccharide receptor complex. Given its role in innate immune responses to bacterial infections, MIF is a novel target for therapeutic intervention in patients with septic shock.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: Blood-sucking arthropods' salivary glands contain a remarkable diversity of antihemostatics. The aim of the present study was to identify the unique salivary anticoagulant of the sand fly Lutzomyia longipalpis, which remained elusive for decades. METHODS AND RESULTS: Several L. longipalpis salivary proteins were expressed in human embryonic kidney 293 cells and screened for inhibition of blood coagulation. A novel 32.4-kDa molecule, named Lufaxin, was identified as a slow, tight, noncompetitive, and reversible inhibitor of factor Xa (FXa). Notably, Lufaxin's primary sequence does not share similarity to any physiological or salivary inhibitors of coagulation reported to date. Lufaxin is specific for FXa and does not interact with FX, Dansyl-Glu-Gly-Arg-FXa, or 15 other enzymes. In addition, Lufaxin blocks prothrombinase and increases both prothrombin time and activated partial thromboplastin time. Surface plasmon resonance experiments revealed that FXa binds Lufaxin with an equilibrium constant ≈3 nM, and isothermal titration calorimetry determined a stoichiometry of 1:1. Lufaxin also prevents protease-activated receptor 2 activation by FXa in the MDA-MB-231 cell line and abrogates edema formation triggered by injection of FXa in the paw of mice. Moreover, Lufaxin prevents FeCl(3)-induced carotid artery thrombus formation and prolongs activated partial thromboplastin time ex vivo, implying that it works as an anticoagulant in vivo. Finally, salivary gland of sand flies was found to inhibit FXa and to interact with the enzyme. CONCLUSIONS: Lufaxin belongs to a novel family of slow-tight FXa inhibitors, which display antithrombotic and anti-inflammatory activities. It is a useful tool to understand FXa structural features and its role in prohemostatic and proinflammatory events.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Myocardial contractile failure in septic shock may develop following direct interactions, within the heart itself, between molecular motifs released by pathogens and their specific receptors, notably those belonging to the toll-like receptor (TLR) family. Here, we determined the ability of bacterial flagellin, the ligand of mammalian TLR5, to trigger myocardial inflammation and contractile dysfunction. METHODOLOGY/PRINCIPAL FINDINGS: TLR5 expression was determined in H9c2 cardiac myoblasts, in primary rat cardiomyocytes, and in whole heart extracts from rodents and humans. The ability of flagellin to activate pro-inflammatory signaling pathways (NF-kappaB and MAP kinases) and the expression of inflammatory cytokines was investigated in H9c2 cells, and, in part, in primary cardiomyocytes, as well as in the mouse myocardium in vivo. The influence of flagellin on left ventricular function was evaluated in mice by a conductance pressure-volume catheter. Cardiomyocytes and intact myocardium disclosed significant TLR5 expression. In vitro, flagellin activated NF-kappaB, MAP kinases, and the transcription of inflammatory genes. In vivo, flagellin induced cardiac activation of NF-kappaB, expression of inflammatory cytokines (TNF alpha, IL-1 beta, IL-6, MIP-2 and MCP-1), and provoked a state of reversible myocardial dysfunction, characterized by cardiac dilation, reduced ejection fraction, and decreased end-systolic elastance. CONCLUSION/SIGNIFICANCE: These results are the first to indicate that flagellin has the ability to trigger cardiac innate immune responses and to acutely depress myocardial contractility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Deficiency of protease-activated receptor-2 (PAR2) modulates inflammation in several models of inflammatory and autoimmune disease, although the underlying mechanism(s) are not understood. PAR2 is expressed on endothelial and immune cells, and is implicated in dendritic cell (DC) differentiation. We investigated in vivo the impact of PAR2 activation on DCs and T cells in PAR2 wild-type (WT) and knockout (KO) mice using a specific PAR2 agonist peptide (AP2). PAR2 activation significantly increased the frequency of mature CD11c(high) DCs in draining lymph nodes 24 hr after AP2 administration. Furthermore, these DCs exhibited increased expression of major histocompatibility complex (MHC) class II and CD86. A significant increase in activated (CD44(+) CD62(-)) CD4(+) and CD8(+) T-cell frequencies was also observed in draining lymph nodes 48 hr after AP2 injection. No detectable change in DC or T-cell activation profiles was observed in the spleen. The influence of PAR2 signalling on antigen transport to draining lymph nodes was assessed in the context of delayed-type hypersensitivity. PAR2 WT mice that were sensitized by skin-painting with fluorescein isothiocyanate (FITC) to induce delayed-type hypersensitivity possessed elevated proportion of FITC(+) DCs in draining lymph nodes 24 hr after FITC painting when compared with PAR2 KO mice (0.95% versus 0.47% of total lymph node cells). Collectively, these results demonstrate that PAR2 signalling promotes DC trafficking to the lymph nodes and subsequent T-cell activation, and thus provides an explanation for the pro-inflammatory effect of PAR2 in animal models of inflammation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Infection by the human protozoan parasite Leishmania can lead, depending primarily on the parasite species, to either cutaneous or mucocutaneous lesions, or fatal generalized visceral infection. In the New World, Leishmania (Viannia) species can cause mucocutaneous leishmaniasis (MCL). Clinical MCL involves a strong hyper-inflammatory response and parasitic dissemination (metastasis) from a primary lesion to distant sites, leading to destructive metastatic secondary lesions especially in the nasopharyngal areas. Recently, we reported that metastasizing, but not non-metastatic strains of Leishmania (Viannia) guyanensis, have high burden of a non-segmented dsRNA virus, Leishmania RNA Virus (LRV). Viral dsRNA is sensed by the host Toll-like Receptor 3 (TLR3) thereby inducing a pro-inflammatory response and exacerbating the disease. The presence of LRV in Leishmania opens new perspectives not only in basic understanding of the intimate relation between the parasite and LRV, but also in understanding the importance of the inflammatory response in MCL patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Protein tyrosine kinases are pivotal in central nervous tissue development and maintenance. Here we focus on the expression of Ehk-1, a novel Elk-related receptor tyrosine kinase. Ehk-1 gene expression is observed in the developing and adult central nervous system and is highly regulated throughout development at both the messenger RNA and protein levels. Three messenger RNA transcripts of 8.5, 5.9 and 5.1 kb are detectable in the rat brain and a variety of splice possibilities have been identified. However, a major protein species of around M(r) 120,000 predominates throughout development. Ehk-1 messenger RNA and protein levels are highest in the first postnatal week. By in situ messenger RNA hybridization the gene is expressed by all neurons of the adult brain, but mostly in the hippocampus, cerebral cortex and large neurons of the deep cerebellar nuclei, as well as the Purkinje and granular cells of the cerebellum. At earlier stages of development, transcripts are most prominent in the periventricular germinal layers of the brain. Immunohistochemistry reveals a pronounced membrane associated protein expression in immature neurons. In the adult animal, peak reactivity was found in the neuropil with sparing of most perikarya. The spatial and temporal pattern of ehk-1 gene expression suggests a role in both the development and maintenance of differentiated neurons of the central nervous system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Type I interferon (IFN-α/β) induction upon viral infection contributes to the early antiviral host defense and ensures survival until the onset of adaptive immunity. Many viral infections lead to an acute, transient IFN expression which peaks a few hours after infection and reverts to initial levels after 24 to 36 h. Robust IFN expression often is conferred by specialized plasmacytoid dendritic cells (pDC) and may depend on positive-feedback amplification via the type I IFN receptor (IFNAR). Here, we show that mice infected with Thogoto virus (THOV), which is an influenza virus-like orthomyxovirus transmitted by ticks, mounted sustained IFN responses that persisted up to 72 h after infection. For this purpose, we used a variant of THOV lacking its IFN-antagonistic protein ML, an elongated version of the matrix (M) protein [THOV(ΔML)]. Of note, large amounts of type I IFN were also found in the serum of mice lacking the IFNAR. Early IFN-α expression seemed to depend on Toll-like receptor (TLR) signaling, whereas prolonged IFN-α responses strictly depended on RIG-I-like helicase (RLH) signaling. Unexpectedly, THOV(ΔML)-infected bone marrow-derived pDC (BM-pDC) produced only moderate IFN levels, whereas myeloid DC (BM-mDC) showed massive IFN induction that was IPS-1-dependent, suggesting that BM-mDC are involved in the massive, sustained IFN production in THOV(ΔML)-infected animals. Thus, our data are compatible with the model that THOV(ΔML) infection is sensed in the acute phase via TLR and RLH systems, whereas at later time points only RLH signaling is responsible for the induction of sustained IFN responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The discovery of a targeted therapeutic compound along with its companion predictive biomarker is a major goal of clinical development for a personalized anticancer therapy to date. Here we present evidence of the predictive value of TLR3 expression by tumor cells for the efficacy of Poly (A:U) dsRNA in 194 breast cancer patients enrolled in a randomized clinical trial. Adjuvant treatment with double-stranded RNA (dsRNA) was associated with a significant decrease in the risk of metastatic relapse in TLR3 positive but not in TLR3-negative breast cancers. Moreover, we show the functional relevance of TLR3 expression by human tumor cells for the antitumor effects mediated by dsRNA in several preclinical mouse models carried out in immunocompromised animals. These 2 independent lines of evidence relied upon the generation of a novel tool, an anti-TLR3 antibody (40F9.6) validated for routine detection of TLR3 expression on paraffin-embedded tissues. Altogether, these data suggest that dsRNA mediates its therapeutic effect through TLR3 expressed on tumor cells, and could therefore represent an effective targeted treatment in patients with TLR3-positive cancers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Toll-like receptor ligands are potentially useful adjuvants for the development of clinical T cell vaccination. Here we investigated the novel Toll-like receptor2 ligand P40, the outer membrane protein A derived from Klebsiella pneumoniae. Seventeen human leukocyte antigen-A*0201 positive stage III/IV melanoma patients were vaccinated with P40 and Melan-A/Mart-1 peptide subcutaneously in monthly intervals. Adverse reactions were mild-to-moderate. Fourteen patients received at least 8 vaccinations and were thus evaluable for clinical tumor and immune responses. Seven patients experienced progressive disease, whereas 2 patients had stable disease throughout the trial period, 1 of them with regression of multiple skin metastases. The remaining 5 patients had no measurable disease. Melan-A/Mart-1 specific CD8 T cells were analyzed ex vivo, with positive results in 6 of 14 evaluable patients. Increased percentages of T cells were found in three patients, memory/effector T cell differentiation in 4 patients, and a positive interferon-gamma Elispot assay in 1 patient. Antibody responses to P40 were observed in all patients. We conclude that vaccination with peptide and P40 was feasible and induced ex vivo detectable tumor antigen specific T cell responses in 6 of 14 patients with advanced melanoma.