196 resultados para Single Cell
Resumo:
Neural comparisons of bilateral sensory inputs are essential for visual depth perception and accurate localization of sounds in space. All animals, from single-cell prokaryotes to humans, orient themselves in response to environmental chemical stimuli, but the contribution of spatial integration of neural activity in olfaction remains unclear. We investigated this problem in Drosophila melanogaster larvae. Using high-resolution behavioral analysis, we studied the chemotaxis behavior of larvae with a single functional olfactory neuron on either the left or right side of the head, allowing us to examine unilateral or bilateral olfactory input. We developed new spectroscopic methods to create stable odorant gradients in which odor concentrations were experimentally measured. In these controlled environments, we observed that a single functional neuron provided sufficient information to permit larval chemotaxis. We found additional evidence that the overall accuracy of navigation is enhanced by the increase in the signal-to-noise ratio conferred by bilateral sensory input.
Resumo:
Background: Complex wounds pose a major challenge in reconstructive and trauma surgery. Several approaches to increase the healing process have been proposed in the last decades. In this study we study the mechanism of action of the Vacuum Assisted Closure device in diabetic wounds. Methods: Full-thickness wounds were excised in diabetic mice and treated with the VAC device or its isolated components: an occlusive dressing (OD) alone, subathmospheric pressure at 125 mm Hg (Suction), and a polyurethane foam without (Foam) and with (Foamc) downward compression of approximately 125 mm Hg. The last goups were treated with either the complete VAC device (VAC) or with a silicne interface that alows fluid removel (Mepithel-VAC). The effects of the treatment modes on the wound surface were quantified by a two-dimensional immunohistochemical staging system based on vasculature, as defined by blood vessel density (CD31) and cell proliferation (defined by ki67 positivity), 7 days post wounding. Finite element modelling was used to predict wound surface deformation under dressing modes and cross sections of in situ fixed tissues were used to measure actual microstrain. Results: The foam-wound interface of the Vacuum Assisted Closure device causes significant wound stains (60%) causing a deformation of the single cell level leading to a profound upregulation of cell proliferation (4-fold) and angiogenisis (2.2-fold) compared to OD treated wounds. Polyurethane foam exposure itself causes a frather unspecific angiogenic response (Foamc, 2 - fold, Foam, 2.2 - fold) without changes of the cell proliferation rate of the wound bed. Suction alone without a specific interface does not have an effect on meassured parameters, showing similar results to untreated wounds. A perforated silicone interface caused a significant lower microdeforamtion of the wound bed correlating to changes of the wound tissues. Conclusion: The Vacuum Assisted Closure device induce significanttissue growth in diabetic wounds. The wound foam interface under suction causes profound macrodeformation that stimulates tissue growth by angiogenesis and cell proliferation. It needs to be taken in consideration that in the clinical setting different wound types may profit from different elements of this suction device.
Resumo:
Multisensory interactions are observed in species from single-cell organisms to humans. Important early work was primarily carried out in the cat superior colliculus and a set of critical parameters for their occurrence were defined. Primary among these were temporal synchrony and spatial alignment of bisensory inputs. Here, we assessed whether spatial alignment was also a critical parameter for the temporally earliest multisensory interactions that are observed in lower-level sensory cortices of the human. While multisensory interactions in humans have been shown behaviorally for spatially disparate stimuli (e.g. the ventriloquist effect), it is not clear if such effects are due to early sensory level integration or later perceptual level processing. In the present study, we used psychophysical and electrophysiological indices to show that auditory-somatosensory interactions in humans occur via the same early sensory mechanism both when stimuli are in and out of spatial register. Subjects more rapidly detected multisensory than unisensory events. At just 50 ms post-stimulus, neural responses to the multisensory 'whole' were greater than the summed responses from the constituent unisensory 'parts'. For all spatial configurations, this effect followed from a modulation of the strength of brain responses, rather than the activation of regions specifically responsive to multisensory pairs. Using the local auto-regressive average source estimation, we localized the initial auditory-somatosensory interactions to auditory association areas contralateral to the side of somatosensory stimulation. Thus, multisensory interactions can occur across wide peripersonal spatial separations remarkably early in sensory processing and in cortical regions traditionally considered unisensory.
Resumo:
Chemical pollution is known to affect microbial community composition but it is poorly understood how toxic compounds influence physiology of single cells that may lay at the basis of loss of reproductive fitness. Here we analyze physiological disturbances of a variety of chemical pollutants at single cell level using the bacterium Pseudomonas fluorescens in an oligotrophic growth assay. As a proxy for physiological disturbance we measured changes in geometric mean ethidium bromide (EB) fluorescence intensities in subpopulations of live and dividing cells exposed or not exposed to different dosages of tetradecane, 4-chlorophenol, 2-chlorobiphenyl, naphthalene, benzene, mercury chloride, or water-dissolved oil fractions. Because ethidium bromide efflux is an energy-dependent process any disturbance in cellular energy generation is visible as an increased cytoplasmic fluorescence. Interestingly, all pollutants even at the lowest dosage of 1 nmol/mL culture produced significantly increased ethidium bromide fluorescence compared to nonexposed controls. Ethidium bromide fluorescence intensities increased upon pollutant exposure dosage up to a saturation level, and were weakly (r(2) = 0.3905) inversely correlated to the proportion of live cells at that time point in culture. Temporal increase in EB fluorescence of growing cells is indicative for toxic but reversible effects. Cells displaying high continued EB fluorescence levels experience constant and permanent damage, and no longer contribute to population growth. The procedure developed here using bacterial ethidium bromide efflux pump activity may be a useful complement to screen sublethal toxicity effects of chemicals.
Resumo:
The Cbeta0 alternate cassette exon is located between the Jbeta1 and Cbeta1 genes in the mouse TCR beta-locus. In T cells with a VDJbeta1 rearrangement, the Cbeta0 exon may be included in TCRbeta transcripts (herein called TCRbeta-Cbeta0 transcripts), potentially inserting an additional 24 aa between the V and C domains of the TCR beta-chain. These TCRbeta splice isoforms may be differentially regulated after Ag activation, because we detected TCRbeta-Cbeta0 transcripts in a high proportion (>60%) of immature and mature T cells having VDJbeta1 rearrangements but found a substantially reduced frequency (<35%) of TCRbeta-Cbeta0 expression among CD8 T cells selected by Ag in vivo. To study the potential activity of the TCRbeta-Cbeta0 splice variant, we cloned full-length TCR cDNAs by single-cell RT-PCR into retroviral expression vectors. We found that the TCRbeta-Cbeta0 splice isoform can function during an early stage of T cell development normally dependent on TCR beta-chain expression. We also demonstrate that T hybridoma-derived cells expressing a TCRbeta-Cbeta0 isoform together with the clonally associated TCR alpha-chain recognize the same cognate peptide-MHC ligand as the corresponding normal alphabetaTCR. This maintenance of receptor function and specificity upon insertion of the Cbeta0 peptide cassette signifies a remarkable adaptability for the TCR beta-chain, and our findings open the possibility that this splice isoform may function in vivo.
Resumo:
Phenotypic and functional cell properties are usually analyzed at the level of defined cell populations but not single cells. Yet, large differences between individual cells may have important functional consequences. It is likely that T-cell-mediated immunity depends on the polyfunctionality of individual T cells, rather than the sum of functions of responding T-cell subpopulations. We performed highly sensitive single-cell gene expression profiling, allowing the direct ex vivo characterization of individual virus-specific and tumor-specific T cells from healthy donors and melanoma patients. We have previously shown that vaccination with the natural tumor peptide Melan-A-induced T cells with superior effector functions as compared with vaccination with the analog peptide optimized for enhanced HLA-A*0201 binding. Here we found that natural peptide vaccination induced tumor-reactive CD8 T cells with frequent coexpression of both memory/homing-associated genes (CD27, IL7R, EOMES, CXCR3, and CCR5) and effector-related genes (IFNG, KLRD1, PRF1, and GZMB), comparable with protective Epstein-Barr virus-specific and cytomegalovirus-specific T cells. In contrast, memory/homing-associated and effector-associated genes were less frequently coexpressed after vaccination with the analog peptide. Remarkably, these findings reveal a previously unknown level of gene expression diversity among vaccine-specific and virus-specific T cells with the simultaneous coexpression of multiple memory/homing-related and effector-related genes by the same cell. Such broad functional gene expression signatures within antigen-specific T cells may be critical for mounting efficient responses to pathogens or tumors. In summary, direct ex vivo high-resolution molecular characterization of individual T cells provides key insights into the processes shaping the functional properties of tumor-specific and virus-specific T cells.
Resumo:
Intercellular Ca(2+) wave propagation between vascular smooth muscle cells (SMCs) is associated with the propagation of contraction along the vessel. Here, we characterize the involvement of gap junctions (GJs) in Ca(2+) wave propagation between SMCs at the cellular level. Gap junctional communication was assessed by the propagation of intercellular Ca(2+) waves and the transfer of Lucifer Yellow in A7r5 cells, primary rat mesenteric SMCs (pSMCs), and 6B5N cells, a clone of A7r5 cells expressing higher connexin43 (Cx43) to Cx40 ratio. Mechanical stimulation induced an intracellular Ca(2+) wave in pSMC and 6B5N cells that propagated to neighboring cells, whereas Ca(2+) waves in A7r5 cells failed to progress to neighboring cells. We demonstrate that Cx43 forms the functional GJs that are involved in mediating intercellular Ca(2+) waves and that co-expression of Cx40 with Cx43, depending on their expression ratio, may interfere with Cx43 GJ formation, thus altering junctional communication.
Resumo:
CD8(+) CTLs play a critical role in antitumor immunity. However, vaccination with synthetic peptide containing CTL epitopes has not been generally effective in inducing protective antitumor immunity. In this study, we addressed the detailed mechanism(s) involved in this failure using a new tumor model of BALB/c transplanted tumors expressing NY-ESO-1, an extensively studied human cancer/testis Ag. Whereas peptide immunization with an H2-D(d)-restricted CTL epitope derived from NY-ESO-1 (NY-ESO-1 p81-88) induced NY-ESO-1(81-88)-specific CD8(+) T cells in draining lymph nodes and spleens, tumor growth was significantly enhanced. Single-cell analysis of specific CD8(+) T cells revealed that peptide immunization caused apoptosis of >80% of NY-ESO-1(81-88)-specific CD8(+) T cells at tumor sites and repetitive immunization further diminished the number of specific CD8(+) T cells. This phenomenon was associated with elevated surface expression of Fas and programmed death-1. When peptide vaccination was combined with an adjuvant, a TLR9 ligand CpG, the elevated Fas and programmed death-1 expression and apoptosis induction were not observed, and vaccine with peptide and CpG was associated with strong tumor growth inhibition. Selection of appropriate adjuvants is essential for development of effective cancer vaccines, with protection of effector T cells from peptide vaccine-induced apoptosis being a prime objective.
Resumo:
The biocontrol activity of the root-colonizing Pseudomonas fluorescens strain CHA0 is largely determined by the production of antifungal metabolites, especially 2,4-diacetylphloroglucinol. The expression of these metabolites depends on abiotic and biotic environmental factors, in particular, elements present in the rhizosphere. In this study, we have developed a new method for the in situ analysis of antifungal gene expression using flow cytometry combined with green fluorescent protein (GFP)-based reporter fusions to the phlA and prnA genes essential for the production of the antifungal compounds 2,4-diacetylphloroglucinol and pyrrolnitrin, respectively, in strain CHA0. Expression of phlA-gfp and prnA-gfp in CHA0 cells harvested from the rhizosphere of a set of plant species as well as from the roots of healthy, leaf pathogen-attacked, and physically stressed plants were analyzed using a FACSCalibur. After subtraction of background fluorescence emitted by plant-derived particles and CHA0 cells not carrying the gfp reporters, the average gene expression per bacterial cell could be calculated. Levels of phlA and prnA expression varied significantly in the rhizospheres of different plant species. Physical stress and leaf pathogen infection lowered phlA expression levels in the rhizosphere of cucumber. Our results demonstrate that the newly developed approach is suitable to monitor differences in levels of antifungal gene expression in response to various plant-derived factors. An advantage of the method is that it allows quantification of bacterial gene expression in rhizosphere populations at a single-cell level. To our best knowledge, this is the first study using flow cytometry for the in situ analysis of biocontrol gene expression in a plant-beneficial bacterium in the rhizosphere.
Resumo:
Dystrophin mediates a physical link between the cytoskeleton of muscle fibers and the extracellular matrix, and its absence leads to muscle degeneration and dystrophy. In this article, we show that the lack of dystrophin affects the elasticity of individual fibers within muscle tissue explants, as probed using atomic force microscopy (AFM), providing a sensitive and quantitative description of the properties of normal and dystrophic myofibers. The rescue of dystrophin expression by exon skipping or by the ectopic expression of the utrophin analogue normalized the elasticity of dystrophic muscles, and these effects were commensurate to the functional recovery of whole muscle strength. However, a more homogeneous and widespread restoration of normal elasticity was obtained by the exon-skipping approach when comparing individual myofibers. AFM may thus provide a quantification of the functional benefit of gene therapies from live tissues coupled to single-cell resolution.
Resumo:
The multiscale finite-volume (MSFV) method has been derived to efficiently solve large problems with spatially varying coefficients. The fine-scale problem is subdivided into local problems that can be solved separately and are coupled by a global problem. This algorithm, in consequence, shares some characteristics with two-level domain decomposition (DD) methods. However, the MSFV algorithm is different in that it incorporates a flux reconstruction step, which delivers a fine-scale mass conservative flux field without the need for iterating. This is achieved by the use of two overlapping coarse grids. The recently introduced correction function allows for a consistent handling of source terms, which makes the MSFV method a flexible algorithm that is applicable to a wide spectrum of problems. It is demonstrated that the MSFV operator, used to compute an approximate pressure solution, can be equivalently constructed by writing the Schur complement with a tangential approximation of a single-cell overlapping grid and incorporation of appropriate coarse-scale mass-balance equations.
Resumo:
We evaluated the role of the G alpha-q (Galphaq) subunit of heterotrimeric G proteins in the insulin signaling pathway leading to GLUT4 translocation. We inhibited endogenous Galphaq function by single cell microinjection of anti-Galphaq/11 antibody or RGS2 protein (a GAP protein for Galphaq), followed by immunostaining to assess GLUT4 translocation in 3T3-L1 adipocytes. Galphaq/11 antibody and RGS2 inhibited insulin-induced GLUT4 translocation by 60 or 75%, respectively, indicating that activated Galphaq is important for insulin-induced glucose transport. We then assessed the effect of overexpressing wild-type Galphaq (WT-Galphaq) or a constitutively active Galphaq mutant (Q209L-Galphaq) by using an adenovirus expression vector. In the basal state, Q209L-Galphaq expression stimulated 2-deoxy-D-glucose uptake and GLUT4 translocation to 70% of the maximal insulin effect. This effect of Q209L-Galphaq was inhibited by wortmannin, suggesting that it is phosphatidylinositol 3-kinase (PI3-kinase) dependent. We further show that Q209L-Galphaq stimulates PI3-kinase activity in p110alpha and p110gamma immunoprecipitates by 3- and 8-fold, respectively, whereas insulin stimulates this activity mostly in p110alpha by 10-fold. Nevertheless, only microinjection of anti-p110alpha (and not p110gamma) antibody inhibited both insulin- and Q209L-Galphaq-induced GLUT4 translocation, suggesting that the metabolic effects induced by Q209L-Galphaq are dependent on the p110alpha subunit of PI3-kinase. In summary, (i) Galphaq appears to play a necessary role in insulin-stimulated glucose transport, (ii) Galphaq action in the insulin signaling pathway is upstream of and dependent upon PI3-kinase, and (iii) Galphaq can transmit signals from the insulin receptor to the p110alpha subunit of PI3-kinase, which leads to GLUT4 translocation.
Resumo:
Despite large changes in salt intake, the mammalian kidney is able to maintain the extracellular sodium concentration and osmolarity within very narrow margins, thereby controlling blood volume and blood pressure. In the aldosterone-sensitive distal nephron (ASDN), aldosterone tightly controls the activities of epithelial sodium channel (ENaC) and Na,K-ATPase, the two limiting factors in establishing transepithelial sodium transport. It has been proposed that the ENaC/degenerin gene family is restricted to Metazoans, whereas the α- and β-subunits of Na,K-ATPase have homologous genes in prokaryotes. This raises the question of the emergence of osmolarity control. By exploring recent genomic data of diverse organisms, we found that: 1) ENaC/degenerin exists in all of the Metazoans screened, including nonbilaterians and, by extension, was already present in ancestors of Metazoa; 2) ENaC/degenerin is also present in Naegleria gruberi, an eukaryotic microbe, consistent with either a vertical inheritance from the last common ancestor of Eukaryotes or a lateral transfer between Naegleria and Metazoan ancestors; and 3) The Na,K-ATPase β-subunit is restricted to Holozoa, the taxon that includes animals and their closest single-cell relatives. Since the β-subunit of Na,K-ATPase plays a key role in targeting the α-subunit to the plasma membrane and has an additional function in the formation of cell junctions, we propose that the emergence of Na,K-ATPase, together with ENaC/degenerin, is linked to the development of multicellularity in the Metazoan kingdom. The establishment of multicellularity and the associated extracellular compartment ("internal milieu") precedes the emergence of other key elements of the aldosterone signaling pathway.
Resumo:
Tight regulation of the MAP kinase Hog1 is crucial for survival under changing osmotic conditions. Interestingly, we found that Hog1 phosphorylates multiple upstream components, implying feedback regulation within the signaling cascade. Taking advantage of an unexpected link between glucose availability and Hog1 activity, we used quantitative single cell measurements and computational modeling to unravel feedback regulation operating in addition to the well-known adaptation feedback triggered by glycerol accumulation. Indeed, we found that Hog1 phosphorylates its activating kinase Ssk2 on several sites, and cells expressing a non-phosphorylatable Ssk2 mutant are partially defective for feedback regulation and proper control of basal Hog1 activity. Together, our data suggest that Hog1 activity is controlled by intertwined regulatory mechanisms operating with varying kinetics, which together tune the Hog1 response to balance basal Hog1 activity and its steady-state level after adaptation to high osmolarity.
Resumo:
La grande majorité des organismes vivants ont développé un système d'horloges biologiques internes, appelées aussi horloges circadiennes, contrôlant l'expression de gênes impliqués dans de nombreux processus moléculaires et comportementaux. Au cours de la dernière décennie, des analyses « microarray » et séquençages à haut débit sur divers tissus de mammifères, indiquent que jusqu'à 20% du transcriptome serait sous contrôle circadien. Il était jusqu'à présent admis que la majorité des ARNm ayant une accumulation rythmique était générée par une transcription qui était elle-même rythmique. Toutefois, de récentes études ont suggéré qu'une proportion considérable des ARNm cycliques serait en fait générée par des mécanismes post-transcriptionnelles, incluant une régulation par micro-ARN (miARN). Lorsque j'ai débuté mon travail de thèse, l'influence des miARN sur l'expression des gènes circadiens, au niveau pangénomique, était encore méconnue. Par l'utilisation d'un modèle murin, dont la biogenèse des miARN a été spécifiquement désactivée au niveau des cellules hépatiques (knockout conditionnel pour Dicer), je me suis donc intéressée au rôle que jouaient ces molécules régulatrices sur la rythmicité de l'expression génique dans le foie. Des séquençages sur l'ensemble du transcriptome révèlent que l'horloge interne du foie est étonnement résistante à la perte totale des miARN. Nous avons cependant trouvé que les miARN agissent de façon importante sur la régulation de l'expression des gènes contrôlés par l'horloge moléculaire. La corégulation par les miARN, affectant jusqu'à 30% des gènes transcrits de façon rythmiques, conduit ainsi à une modulation de phase et d'amplitude du rythme de l'abondance des ARNm. En revanche, seuls peu de transcrits dépendent uniquement des miARN pour la rythmicité de leur accumulation. Enfin, mon travail met en évidence plusieurs miARN spécifiques, qui semblent préférentiellement moduler l'expression des gènes cycliques et permet l'identification de voies hépatiques particulièrement sujettes à une double régulation par les miARN et l'horloge biologique interne. La première masse d'analyses a essentiellement porté sur le rôle que jouent les miARN au niveau de l'expression des gènes contrôlés par l'horloge interne. Dans deux études de suivi, je me suis penchée sur deux aspects supplémentaires et complémentaires de la manière dont les miARN et l'oscillation de l'expression des gènes interagissent. Dans les hépatocytes murins, spécifiquement privés de Dicer, je me suis demandée si un phénotype horloge avait pu être masqué, dû à un entraînement stable de l'horloge du foie par l'horloge maîtresse du cerveau. J'ai donc commencé une série d'expériences ambitieuses (impliquant la mesure de la rythmicité du foie in vivo, chez l'animal vivant) afin de déséquilibrer l'entrainement de l'horloge hépatique via l'utilisation d'un protocole nutritionnel spécifique. Les premiers résultats suggèrent que dans des conditions où l'animal subit une restriction alimentaire pendant la journée, les miARN sont importants dans la cinétique d'adaptation des organes périphériques à un nouvel horaire de sustentation. Dans une deuxième ligne de recherche, j'ai plus profondément étudié quels seraient les miARN responsables des rythmes post-transcriptionnels des ARNm, en utilisant le séquençage de « small » ARN sur 24h. L'analyse est en cours et se poursuivra après l'obtention de mon diplôme. De façon générale, mon travail révèle d'importants et nouveaux rôles des miARN dans la modulation de l'expression circadienne des gènes hépatiques. De plus, le set de données générées dans l'étude déjà publiée, peut dorénavant servir de ressource valable pour de prochaines investigations sur le rôle physiologique que les miARN jouent au niveau du foie. -- Most living organisms have developed internal timing systems, called circadian clocks, to drive the rhythmic expression of genes involved in many molecular and behavioral processes. Over the last decade, microarray analyses and high- throughput sequencing from various mammalian tissues have indicated that up to 20% of the transcriptome are under circadian control. It was generally assumed that the majority of rhythmic mRNA accumulation is generated by rhythmic transcription. However, recent studies have suggested that a considerable proportion of mRNA cycling may actually be generated by post-transcriptional mechanisms, including by microRNAs. When I started my thesis work, it was still unknown how miRNAs influence circadian gene expression in a genome-wide fashion. Using a mouse model in which miRNA biogenesis can be inactivated in hepatocytes (conditional Dicer knockout mouse), I have thus addressed the role that these regulatory molecules play in rhythmic gene expression in the liver. Whole transcriptome sequencing revealed that the hepatic core clock was surprisingly resilient to total miRNA loss. However, we found that miRNAs acted as important regulators of clock-controlled gene expression. Co- regulation by miRNAs, which affected up to 30% of rhythmically transcribed genes, thus led to the modulation of phases and amplitudes of mRNA abundance rhythms. By contrast, only very few transcripts were strictly dependent on miRNAs for their rhythmic accumulation. Finally, my work highlights several specific miRNAs that appear to preferentially modulate cyclic gene expression, and identifies pathways in the liver that are particularly prone to dual regulation through miRNAs and the clock. The first bulk of analyses mainly dealt with the role that miRNAs play at the level of rhythmic clock output gene expression. In two follow-up studies I further delved into two additional, complementary aspects of how miRNAs and gene expression oscillations interact. First, I addressed whether a core clock phenotype in the hepatocyte-specific Dicer knockout could have been masked due to the stable entrainment of the liver clock by the animals' master clock in the brain. I thus started a series of ambitious experiments (involving the in vivo recording of liver rhythms in live animals) to bring the stable entrainment of the liver clock out of equilibrium using specific feeding protocols. My first results suggest that under conditions when animals are challenged by food restriction to daytime, miRNAs are important for the kinetics of adapting to unusual mealtime in peripheral tissue. In a second line of research, I have more carefully investigated which miRNAs are responsible for post- transcriptional mRNA rhythms using small RNA sequencing around-the-clock. The analyses are ongoing and will be continued after my graduation. Overall, my work uncovered important and novel roles of miRNA activity in shaping hepatic circadian gene expression; moreover, the datasets collect in the published studies can serve as a valuable resource for further investigations into the physiological roles that miRNAs play in liver. -- L'alternance du jour et de la nuit dirige depuis longtemps la vie quotidienne des êtres humains et de la plupart des organismes sur terre. Ce cycle de 24 heures façonne beaucoup de changements comportementaux et physiologiques tels que la vigilance, la température corporelle et le sommeil. Les rythmes journaliers, appelés rythmes circadiens, sont dirigés par des horloges biologiques tournant dans presque chaque cellule du corps. Une structure dans le cerveau agit en tant qu'horloge maitresse pour synchroniser les horloges internes entre elles et en fonction des signaux de jour/nuit extérieurs. Dans les cellules "les gènes de l'horloge" sont activés et désactivés une fois par jour ce qui déclenche des cycles dans lesquels des protéines sont produites de manière circadienne. Ces rythmes protéiques sont spécialisés pour chaque tissu ou organe et peuvent les aider à réaliser leurs tâches quotidiennes. Les rythmes circadiens peuvent être générés d'autres manières n'impliquant pas directement les composants des gènes de l'horloge. Les ARN messagers (ARNm) sont des molécules intermédiaires dans la production de protéines à partir d'ADN. Dans le foie des souris jusqu'à 20% des molécules d'ARNm sont produites suivant des rythmes circadiens. Le foie réalise des tâches essentielles dans le contrôle du métabolisme incluant celui des hydrates de carbone, des graisses et du cholestérol. Un timing précis est important afin de traiter les substances nutritives correctement lors des repas il en résulte une variation des quantités de certains ARNm et protéines coïncidant avec les repas. Les microARNs constituent une autre classe de molécules ARN de très petite taille qui régulent l'efficacité de traduction des ARNm en protéines et la stabilité des ARNm. Lors de mon travail de thèse, j'ai exploré de manière approfondie l'influence de ces petits régulateurs sur les rythmes circadiens du foie de souris. Ces expériences qui impliquaient le "Knock-out" d'un gène essentiel à la production de microARNs montrent qu'au lieu de générer les rythmes des ARNm, les microARNs les ajustent pour répondre aux besoins spécifiques du foie comme assurer leur pic au bon moment de la journée. Le ciblage de microARNs spécifiques peut révéler de nouvelles stratégies pour rectifier ces rythmes lorsque par exemple les fonctions métaboliques ne fonctionnent plus normalement. -- The rising and setting of the sun have long driven the daily schedules of humans and most organisms on the earth. This 24-hr cycle shapes many behavioural and physiological changes, such as alertness, body temperature, and sleep. These daily rhythms, which are called circadian rhythms, are dictated by biological clocks that are ticking in almost every single cell of the body. A region in the brain acts as a master clock to synchronize the internal clocks with each other and with the outside light/dark cycles. In cells, "core clock genes" are turned on and off once per day, which triggers cycles that cause some proteins to be produced in a circadian manner. The protein rhythms are specialized to a particular tissue or organ, and may help them to carry out their designated daily tasks. However, circadian rhythms might also be produced by other ways that do not involve these core clock components. Messenger RNAs (mRNAs) are intermediate molecules in the production of proteins from DNA. In the mouse liver, up to 20% of mRNA molecules are produced in circadian cycles. The liver performs essential tasks that control metabolism-including that of carbohydrates, fats, and cholesterol. Precisely timing when certain mRNAs and proteins reach peaks and troughs in their activities to coincide with mealtimes is important for nutrients to be properly processed. Other RNA molecules called microRNAs, i.e. RNAs of very small size, regulate at which rate mRNA molecules are translated into proteins. In my thesis work, I have explored at the influence of these small regulators on circadian rhythms in the mouse liver in greater detail. These experiments, which involved "knocking out" a gene that is essential for the production of microRNAs, show that rather than generating the mRNA rhythms, the microRNAs appear to adjust them to meet the specific needs of the liver, such as ensuring that they peak at the right time-of-day. Targeting specific microRNA molecules may reveal new strategies to tweak these rhythms, which could help to improve conditions when metabolic functions go wrong.