65 resultados para Signal Processing Research Center


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND AND OBJECTIVES: Donor cytomegalovirus seropositivity was reported to improve leukemia outcomes in HLA-A2 identical hematopoietic cell transplant (HCT) recipients, due to a possible cross-reactivity of donor HLA-A2-restricted CMV-specific T cells with minor histocompatibility (H) antigen of recipient cells. This study analyzed the role of donor CMV serostatus and HLA-A2 status on leukemia outcomes in a large population of HLA-identical HCT recipients. DESIGN AND METHODS: Leukemia patients transplanted between 1992 and 2003 at the Fred Hutchinson Cancer Research Center were categorized as standard risk [leukemia first remission, chronic myeloid leukemia in chronic phase (CML-CP)] and high risk (advanced disease) patients. Time-to-event analysis was used to evaluate the risk of relapse and death associated with HLA-A2 status and donor CMV serostatus. RESULTS: In standard risk patients, acute leukemia (p<0.001) and sex mismatch (female to male, p=0.004)) independently increased the risk of death, while acute leukemia increased the risk of relapse (p<0.001). In high risk patients acute leukemia (p=0.01), recipient age > or = 40 (p=0.005) and herpes simplex virus (HSV) seropositivity (p<0.001) significantly increased the risk death; HSV seropositivity (p=0.006) increased the risk of relapse. Donor CMV serostatus had no significant effect on mortality or relapse in any HLA group. INTERPRETATION AND CONCLUSION: This epidemiological study did not confirm the previously reported effect of donor CMV serostatus on the outcomes of leukemia in HLA-A2-identical HCT recipients. Addressing the question of cross-reactivity of HLA-A2-restricted CMV-specific T cells with minor H antigens in a clinical study would require knowledge of the patient's minor H antigen genotype. However, because of the unbalanced distribution of HLA-A2-restricted minor H antigens in the population and their incomplete identification, this question might be more appropriately evaluated in in vitro experiments than in a clinical study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abstract : The human body is composed of a huge number of cells acting together in a concerted manner. The current understanding is that proteins perform most of the necessary activities in keeping a cell alive. The DNA, on the other hand, stores the information on how to produce the different proteins in the genome. Regulating gene transcription is the first important step that can thus affect the life of a cell, modify its functions and its responses to the environment. Regulation is a complex operation that involves specialized proteins, the transcription factors. Transcription factors (TFs) can bind to DNA and activate the processes leading to the expression of genes into new proteins. Errors in this process may lead to diseases. In particular, some transcription factors have been associated with a lethal pathological state, commonly known as cancer, associated with uncontrolled cellular proliferation, invasiveness of healthy tissues and abnormal responses to stimuli. Understanding cancer-related regulatory programs is a difficult task, often involving several TFs interacting together and influencing each other's activity. This Thesis presents new computational methodologies to study gene regulation. In addition we present applications of our methods to the understanding of cancer-related regulatory programs. The understanding of transcriptional regulation is a major challenge. We address this difficult question combining computational approaches with large collections of heterogeneous experimental data. In detail, we design signal processing tools to recover transcription factors binding sites on the DNA from genome-wide surveys like chromatin immunoprecipitation assays on tiling arrays (ChIP-chip). We then use the localization about the binding of TFs to explain expression levels of regulated genes. In this way we identify a regulatory synergy between two TFs, the oncogene C-MYC and SP1. C-MYC and SP1 bind preferentially at promoters and when SP1 binds next to C-NIYC on the DNA, the nearby gene is strongly expressed. The association between the two TFs at promoters is reflected by the binding sites conservation across mammals, by the permissive underlying chromatin states 'it represents an important control mechanism involved in cellular proliferation, thereby involved in cancer. Secondly, we identify the characteristics of TF estrogen receptor alpha (hERa) target genes and we study the influence of hERa in regulating transcription. hERa, upon hormone estrogen signaling, binds to DNA to regulate transcription of its targets in concert with its co-factors. To overcome the scarce experimental data about the binding sites of other TFs that may interact with hERa, we conduct in silico analysis of the sequences underlying the ChIP sites using the collection of position weight matrices (PWMs) of hERa partners, TFs FOXA1 and SP1. We combine ChIP-chip and ChIP-paired-end-diTags (ChIP-pet) data about hERa binding on DNA with the sequence information to explain gene expression levels in a large collection of cancer tissue samples and also on studies about the response of cells to estrogen. We confirm that hERa binding sites are distributed anywhere on the genome. However, we distinguish between binding sites near promoters and binding sites along the transcripts. The first group shows weak binding of hERa and high occurrence of SP1 motifs, in particular near estrogen responsive genes. The second group shows strong binding of hERa and significant correlation between the number of binding sites along a gene and the strength of gene induction in presence of estrogen. Some binding sites of the second group also show presence of FOXA1, but the role of this TF still needs to be investigated. Different mechanisms have been proposed to explain hERa-mediated induction of gene expression. Our work supports the model of hERa activating gene expression from distal binding sites by interacting with promoter bound TFs, like SP1. hERa has been associated with survival rates of breast cancer patients, though explanatory models are still incomplete: this result is important to better understand how hERa can control gene expression. Thirdly, we address the difficult question of regulatory network inference. We tackle this problem analyzing time-series of biological measurements such as quantification of mRNA levels or protein concentrations. Our approach uses the well-established penalized linear regression models where we impose sparseness on the connectivity of the regulatory network. We extend this method enforcing the coherence of the regulatory dependencies: a TF must coherently behave as an activator, or a repressor on all its targets. This requirement is implemented as constraints on the signs of the regressed coefficients in the penalized linear regression model. Our approach is better at reconstructing meaningful biological networks than previous methods based on penalized regression. The method is tested on the DREAM2 challenge of reconstructing a five-genes/TFs regulatory network obtaining the best performance in the "undirected signed excitatory" category. Thus, these bioinformatics methods, which are reliable, interpretable and fast enough to cover large biological dataset, have enabled us to better understand gene regulation in humans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have developed a digital holographic microscope (DHM), in a transmission mode, especially dedicated to the quantitative visualization of phase objects such as living cells. The method is based on an original numerical algorithm presented in detail elsewhere [Cuche et al., Appl. Opt. 38, 6994 (1999)]. DHM images of living cells in culture are shown for what is to our knowledge the first time. They represent the distribution of the optical path length over the cell, which has been measured with subwavelength accuracy. These DHM images are compared with those obtained by use of the widely used phase contrast and Nomarski differential interference contrast techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A T(2) magnetization-preparation (T(2) Prep) sequence is proposed that is insensitive to B(1) field variations and simultaneously provides fat suppression without any further increase in specific absorption rate (SAR). Increased B(1) inhomogeneity at higher magnetic field strength (B(0) > or = 3T) necessitates a preparation sequence that is less sensitive to B(1) variations. For the proposed technique, T(2) weighting in the image is achieved using a segmented B(1)-insensitive rotation (BIR-4) adiabatic pulse by inserting two equally long delays, one after the initial reverse adiabatic half passage (AHP), and the other before the final AHP segment of a BIR-4 pulse. This sequence yields T(2) weighting with both B(1) and B(0) insensitivity. To simultaneously suppress fat signal (at the cost of B(0) insensitivity), the second delay is prolonged so that fat accumulates additional phase due to its chemical shift. Numerical simulations as well as phantom and in vivo image acquisitions were performed to show the efficacy of the proposed technique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we present an efficient numerical scheme for the recently introduced geodesic active fields (GAF) framework for geometric image registration. This framework considers the registration task as a weighted minimal surface problem. Hence, the data-term and the regularization-term are combined through multiplication in a single, parametrization invariant and geometric cost functional. The multiplicative coupling provides an intrinsic, spatially varying and data-dependent tuning of the regularization strength, and the parametrization invariance allows working with images of nonflat geometry, generally defined on any smoothly parametrizable manifold. The resulting energy-minimizing flow, however, has poor numerical properties. Here, we provide an efficient numerical scheme that uses a splitting approach; data and regularity terms are optimized over two distinct deformation fields that are constrained to be equal via an augmented Lagrangian approach. Our approach is more flexible than standard Gaussian regularization, since one can interpolate freely between isotropic Gaussian and anisotropic TV-like smoothing. In this paper, we compare the geodesic active fields method with the popular Demons method and three more recent state-of-the-art algorithms: NL-optical flow, MRF image registration, and landmark-enhanced large displacement optical flow. Thus, we can show the advantages of the proposed FastGAF method. It compares favorably against Demons, both in terms of registration speed and quality. Over the range of example applications, it also consistently produces results not far from more dedicated state-of-the-art methods, illustrating the flexibility of the proposed framework.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we present the segmentation of the headand neck lymph node regions using a new active contourbased atlas registration model. We propose to segment thelymph node regions without directly including them in theatlas registration process; instead, they are segmentedusing the dense deformation field computed from theregistration of the atlas structures with distinctboundaries. This approach results in robust and accuratesegmentation of the lymph node regions even in thepresence of significant anatomical variations between theatlas-image and the patient's image to be segmented. Wealso present a quantitative evaluation of lymph noderegions segmentation using various statistical as well asgeometrical metrics: sensitivity, specificity, dicesimilarity coefficient and Hausdorff distance. Acomparison of the proposed method with two other state ofthe art methods is presented. The robustness of theproposed method to the atlas selection, in segmenting thelymph node regions, is also evaluated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The purpose of this study is to introduce and describe a newly developed index using foot pressure analysis to quantify the degree of equinus gait in children with cerebral palsy before and after injection with botulinum toxin. Data were captured preinjection and 12 weeks postinjection. Ten children aged 2(1/2) to 6(1/2) years took part (5 boys and 5 girls). Three of them had a diagnosis of spastic diplegia and 7 of congenital hemiplegia. In total, 13 limbs were analyzed. After orientation and segmentation of raw pedobarographic data, we determined a dynamic foot pressure index graded 0 to 100 that quantified the relative degree of heel and forefoot contact during stance. These data were correlated (Pearson correlation) with clinical measurements of dorsiflexion at the ankle (on a slow and fast stretch) and video observation (using the Observational Gait Scale). Pedobarograph data were strongly correlated with both the Observational Gait Scale scores (R = 0.79, P < 0.005) and clinical measurements of dorsiflexion on a fast stretch, which is reflective of spasticity (R = 0.70, P < 0.005). We demonstrated the index's sensitivity in detecting changes in spasticity and good correlation with video observations seems to indicate this technique's potential validity. When manipulated and segmented appropriately, and with the development of a simple ordinal index, we found that foot pressure data provided a useful tool in tracking changes in patients with spastic equinus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The α(1)-adrenergic receptor (AR) subtypes (α(1a), α(1b), and α(1d)) mediate several physiological effects of epinephrine and norepinephrine. Despite several studies in recombinant systems and insight from genetically modified mice, our understanding of the physiological relevance and specificity of the α(1)-AR subtypes is still limited. Constitutive activity and receptor oligomerization have emerged as potential features regulating receptor function. Another recent paradigm is that β arrestins and G protein-coupled receptors themselves can act as scaffolds binding a variety of proteins and this can result in growing complexity of the receptor-mediated cellular effects. The aim of this review is to summarize our current knowledge on some recently identified functional paradigms and signaling networks that might help to elucidate the functional diversity of the α(1)-AR subtypes in various organs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT: The 26th annual meeting of the Society for Immunotherapy of Cancer took place in Bethesda on November 4 to 6, 2011 and was organized by Charles G. Drake (Johns Hopkins University) Dolores J. Schendel (Helmholtz Zentrum Muenchen - German Research Center for Environmental Health Institute of Molecular Immunology), Jeffrey Schlom (National Cancer Institute, National Institutes of Health), and Jedd D. Wolchok (Memorial Sloan-Kettering Cancer Center). It was an event marked by a number of extraordinary circumstances: it attracted a record attendance of 805 participants from 24 different countries. The gathering came in the wake of great as well as very sad news for the tumor immunology community. Good news included the approval of anti-CTLA-4 as a therapy for metastatic melanoma in April and the announcement in early October of the Nobel Prize in Physiology and Medicine awarded to pioneering studies in the field of immunology. Indeed, one part of the prize went to Dr. Bruce Beutler, Scripps Research Institute, La Jolla, USA and Dr. Jules Hoffman, Institute for Molecular Cell Biology, Strasbourg, France, for their discoveries in innate immunity and the other part to Dr. Ralph Steinman, The Rockfeller University, New York, for his discovery of dendritic cells. Sad news was the losses of two giants in the field. Jürg Tschopp of the University of Lausanne in March and Ralph Steinman, who passed away just three days before his Nobel Prize announcement. The loss of these two charismatic scientific leaders was particularly sad for the Annual Meeting as both J. Tschopp and R. Steinman were confirmed speakers at this meeting: the former to deliver the keynote lecture and the latter as recipient of the Richard V. Smalley prize.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: Attention deficit and hyperactivity disorder (ADHD) is one of the most frequent disorders in childhood and adolescence. Both neurocognitive and environmental factors have been related to ADHD. The current study contributes to the documentation of the predictive relation between early attachment deprivation and ADHD. METHOD: Data were collected from 641 adopted adolescents (53.2 % girls) aged 11-16 years in five countries, using the DSM oriented scale for ADHD of the Child Behavior Checklist (CBCL) (Achenbach and Rescorla, Manual for the ASEBA school-age forms and profiles. University of Vermont, Research Center for Children, Youth and Families, Burlington, 2001). The influence of attachment deprivation on ADHD symptoms was initially tested taking into consideration several key variables that have been reported as influencing ADHD at the adoptee level (age, gender, length of time in the adoptive family, parents' educational level and marital status), and at the level of the country of origin and country of adoption (poverty, quality of health services and values). The analyses were computed using the multilevel modeling technique. RESULTS: The results showed that an increase in the level of ADHD symptoms was predicted by the duration of exposure to early attachment deprivation, estimated from the age of adoption, after controlling for the influence of adoptee and country variables. The effect of the age of adoption was also demonstrated to be specific to the level of ADHD symptoms in comparison to both the externalizing and internalizing behavior scales of the CBCL. CONCLUSION: Deprivation of stable and sensitive care in infancy may have long-lasting consequences for children's development.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: Visualization of coronary blood flow in the right and left coronary system in volunteers and patients by means of a modified inversion-prepared bright-blood coronary magnetic resonance angiography (cMRA) sequence. MATERIALS AND METHODS: cMRA was performed in 14 healthy volunteers and 19 patients on a 1.5 Tesla MR system using a free-breathing 3D balanced turbo field echo (b-TFE) sequence with radial k-space sampling. For magnetization preparation a slab selective and a 2D selective inversion pulse were used for the right and left coronary system, respectively. cMRA images were evaluated in terms of clinically relevant stenoses (< 50 %) and compared to conventional catheter angiography. Signal was measured in the coronary arteries (coro), the aorta (ao) and in the epicardial fat (fat) to determine SNR and CNR. In addition, maximal visible vessel length, and vessel border definition were analyzed. RESULTS: The use of a selective inversion pre-pulse allowed direct visualization of the coronary blood flow in the right and left coronary system. The measured SNR and CNR, vessel length, and vessel sharpness in volunteers (SNR coro: 28.3 +/- 5.0; SNR ao: 37.6 +/- 8.4; CNR coro-fat: 25.3 +/- 4.5; LAD: 128.0 cm +/- 8.8; RCA: 74.6 cm +/- 12.4; Sharpness: 66.6 % +/- 4.8) were slightly increased compared to those in patients (SNR coro: 24.1 +/- 3.8; SNR ao: 33.8 +/- 11.4; CNR coro-fat: 19.9 +/- 3.3; LAD: 112.5 cm +/- 13.8; RCA: 69.6 cm +/- 16.6; Sharpness: 58.9 % +/- 7.9; n.s.). In the patient study the assessment of 42 coronary segments lead to correct identification of 10 clinically relevant stenoses. CONCLUSION: The modification of a previously published inversion-prepared cMRA sequence allowed direct visualization of the coronary blood flow in the right as well as in the left coronary system. In addition, this sequence proved to be highly sensitive regarding the assessment of clinically relevant stenotic lesions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to develop an ambulatory system for the three-dimensional (3D) knee kinematics evaluation, which can be used outside a laboratory during long-term monitoring. In order to show the efficacy of this ambulatory system, knee function was analysed using this system, after an anterior cruciate ligament (ACL) lesion, and after reconstructive surgery. The proposed system was composed of two 3D gyroscopes, fixed on the shank and on the thigh, and a portable data logger for signal recording. The measured parameters were the 3D mean range of motion (ROM) and the healthy knee was used as control. The precision of this system was first assessed using an ultrasound reference system. The repeatability was also estimated. A clinical study was then performed on five unilateral ACL-deficient men (range: 19-36 years) prior to, and a year after the surgery. The patients were evaluated with the IKDC score and the kinematics measurements were carried out on a 30 m walking trial. The precision in comparison with the reference system was 4.4 degrees , 2.7 degrees and 4.2 degrees for flexion-extension, internal-external rotation, and abduction-adduction, respectively. The repeatability of the results for the three directions was 0.8 degrees , 0.7 degrees and 1.8 degrees . The averaged ROM of the five patients' healthy knee were 70.1 degrees (standard deviation (SD) 5.8 degrees), 24.0 degrees (SD 3.0 degrees) and 12.0 degrees (SD 6.3 degrees for flexion-extension, internal-external rotation and abduction-adduction before surgery, and 76.5 degrees (SD 4.1 degrees), 21.7 degrees (SD 4.9 degrees) and 10.2 degrees (SD 4.6 degrees) 1 year following the reconstruction. The results for the pathologic knee were 64.5 degrees (SD 6.9 degrees), 20.6 degrees (SD 4.0 degrees) and 19.7 degrees (8.2 degrees) during the first evaluation, and 72.3 degrees (SD 2.4 degrees), 25.8 degrees (SD 6.4 degrees) and 12.4 degrees (SD 2.3 degrees) during the second one. The performance of the system enabled us to detect knee function modifications in the sagittal and transverse plane. Prior to the reconstruction, the ROM of the injured knee was lower in flexion-extension and internal-external rotation in comparison with the controlateral knee. One year after the surgery, four patients were classified normal (A) and one almost normal (B), according to the IKDC score, and changes in the kinematics of the five patients remained: lower flexion-extension ROM and higher internal-external rotation ROM in comparison with the controlateral knee. The 3D kinematics was changed after an ACL lesion and remained altered one year after the surgery

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Decision-making in an uncertain environment is driven by two major needs: exploring the environment to gather information or exploiting acquired knowledge to maximize reward. The neural processes underlying exploratory decision-making have been mainly studied by means of functional magnetic resonance imaging, overlooking any information about the time when decisions are made. Here, we carried out an electroencephalography (EEG) experiment, in order to detect the time when the brain generators responsible for these decisions have been sufficiently activated to lead to the next decision. Our analyses, based on a classification scheme, extract time-unlocked voltage topographies during reward presentation and use them to predict the type of decisions made on the subsequent trial. Classification accuracy, measured as the area under the Receiver Operator's Characteristic curve was on average 0.65 across 7 subjects. Classification accuracy was above chance levels already after 516 ms on average, across subjects. We speculate that decisions were already made before this critical period, as confirmed by a positive correlation with reaction times across subjects. On an individual subject basis, distributed source estimations were performed on the extracted topographies to statistically evaluate the neural correlates of decision-making. For trials leading to exploration, there was significantly higher activity in dorsolateral prefrontal cortex and the right supramarginal gyrus; areas responsible for modulating behavior under risk and deduction. No area was more active during exploitation. We show for the first time the temporal evolution of differential patterns of brain activation in an exploratory decision-making task on a single-trial basis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, mixed spectral-structural kernel machines are proposed for the classification of very-high resolution images. The simultaneous use of multispectral and structural features (computed using morphological filters) allows a significant increase in classification accuracy of remote sensing images. Subsequently, weighted summation kernel support vector machines are proposed and applied in order to take into account the multiscale nature of the scene considered. Such classifiers use the Mercer property of kernel matrices to compute a new kernel matrix accounting simultaneously for two scale parameters. Tests on a Zurich QuickBird image show the relevance of the proposed method : using the mixed spectral-structural features, the classification accuracy increases of about 5%, achieving a Kappa index of 0.97. The multikernel approach proposed provide an overall accuracy of 98.90% with related Kappa index of 0.985.