112 resultados para Shaker architecture--Maine--Alfred--Maps.
Resumo:
Copy number variants (CNVs) influence the expression of genes that map not only within the rearrangement, but also to its flanks. To assess the possible mechanism(s) underlying this "neighboring effect", we compared intrachromosomal interactions and histone modifications in cell lines of patients affected by genomic disorders and control individuals. Using chromosome conformation capture (4C-seq), we observed that a set of genes flanking the Williams-Beuren Syndrome critical region (WBSCR) were often looping together. The newly identified interacting genes include AUTS2, mutations of which are associated with autism and intellectual disabilities. Deletion of the WBSCR disrupts the expression of this group of flanking genes, as well as long-range interactions between them and the rearranged interval. We also pinpointed concomitant changes in histone modifications between samples. We conclude that large genomic rearrangements can lead to chromatin conformation changes that extend far away from the structural variant, thereby possibly modulating expression globally and modifying the phenotype. GEO SERIES ACCESSION NUMBER: GSE33784, GSE33867.
Resumo:
The human brainstem is a densely packed, complex but highly organised structure. It not only serves as a conduit for long projecting axons conveying motor and sensory information, but also is the location of multiple primary nuclei that control or modulate a vast array of functions, including homeostasis, consciousness, locomotion, and reflexive and emotive behaviours. Despite its importance, both in understanding normal brain function as well as neurodegenerative processes, it remains a sparsely studied structure in the neuroimaging literature. In part, this is due to the difficulties in imaging the internal architecture of the brainstem in vivo in a reliable and repeatable fashion. A modified multivariate mixture of Gaussians (mmMoG) was applied to the problem of multichannel tissue segmentation. By using quantitative magnetisation transfer and proton density maps acquired at 3 T with 0.8 mm isotropic resolution, tissue probability maps for four distinct tissue classes within the human brainstem were created. These were compared against an ex vivo fixated human brain, imaged at 0.5 mm, with excellent anatomical correspondence. These probability maps were used within SPM8 to create accurate individual subject segmentations, which were then used for further quantitative analysis. As an example, brainstem asymmetries were assessed across 34 right-handed individuals using voxel based morphometry (VBM) and tensor based morphometry (TBM), demonstrating highly significant differences within localised regions that corresponded to motor and vocalisation networks. This method may have important implications for future research into MRI biomarkers of pre-clinical neurodegenerative diseases such as Parkinson's disease.
Resumo:
INTRODUCTION: Interindividual variations in regional structural properties covary across the brain, thus forming networks that change as a result of aging and accompanying neurological conditions. The alterations of superficial white matter (SWM) in Alzheimer's disease (AD) are of special interest, since they follow the AD-specific pattern characterized by the strongest neurodegeneration of the medial temporal lobe and association cortices. METHODS: Here, we present an SWM network analysis in comparison with SWM topography based on the myelin content quantified with magnetization transfer ratio (MTR) for 39 areas in each hemisphere in 15 AD patients and 15 controls. The networks are represented by graphs, in which nodes correspond to the areas, and edges denote statistical associations between them. RESULTS: In both groups, the networks were characterized by asymmetrically distributed edges (predominantly in the left hemisphere). The AD-related differences were also leftward. The edges lost due to AD tended to connect nodes in the temporal lobe to other lobes or nodes within or between the latter lobes. The newly gained edges were mostly confined to the temporal and paralimbic regions, which manifest demyelination of SWM already in mild AD. CONCLUSION: This pattern suggests that the AD pathological process coordinates SWM demyelination in the temporal and paralimbic regions, but not elsewhere. A comparison of the MTR maps with MTR-based networks shows that although, in general, the changes in network architecture in AD recapitulate the topography of (de)myelination, some aspects of structural covariance (including the interhemispheric asymmetry of networks) have no immediate reflection in the myelination pattern.
Resumo:
This PhD thesis addresses the issue of scalable media streaming in large-scale networking environments. Multimedia streaming is one of the largest sink of network resources and this trend is still growing as testified by the success of services like Skype, Netflix, Spotify and Popcorn Time (BitTorrent-based). In traditional client-server solutions, when the number of consumers increases, the server becomes the bottleneck. To overcome this problem, the Content-Delivery Network (CDN) model was invented. In CDN model, the server copies the media content to some CDN servers, which are located in different strategic locations on the network. However, they require heavy infrastructure investment around the world, which is too expensive. Peer-to-peer (P2P) solutions are another way to achieve the same result. These solutions are naturally scalable, since each peer can act as both a receiver and a forwarder. Most of the proposed streaming solutions in P2P networks focus on routing scenarios to achieve scalability. However, these solutions cannot work properly in video-on-demand (VoD) streaming, when resources of the media server are not sufficient. Replication is a solution that can be used in these situations. This thesis specifically provides a family of replication-based media streaming protocols, which are scalable, efficient and reliable in P2P networks. First, it provides SCALESTREAM, a replication-based streaming protocol that adaptively replicates media content in different peers to increase the number of consumers that can be served in parallel. The adaptiveness aspect of this solution relies on the fact that it takes into account different constraints like bandwidth capacity of peers to decide when to add or remove replicas. SCALESTREAM routes media blocks to consumers over a tree topology, assuming a reliable network composed of homogenous peers in terms of bandwidth. Second, this thesis proposes RESTREAM, an extended version of SCALESTREAM that addresses the issues raised by unreliable networks composed of heterogeneous peers. Third, this thesis proposes EAGLEMACAW, a multiple-tree replication streaming protocol in which two distinct trees, named EAGLETREE and MACAWTREE, are built in a decentralized manner on top of an underlying mesh network. These two trees collaborate to serve consumers in an efficient and reliable manner. The EAGLETREE is in charge of improving efficiency, while the MACAWTREE guarantees reliability. Finally, this thesis provides TURBOSTREAM, a hybrid replication-based streaming protocol in which a tree overlay is built on top of a mesh overlay network. Both these overlays cover all peers of the system and collaborate to improve efficiency and low-latency in streaming media to consumers. This protocol is implemented and tested in a real networking environment using PlanetLab Europe testbed composed of peers distributed in different places in Europe.
Resumo:
The root system is fundamentally important for plant growth and survival because of its role in water and nutrient uptake. Therefore, plants rely on modulation of root system architecture (RSA) to respond to a changing soil environment. Although RSA is a highly plastic trait and varies both between and among species, the basic root system morphology and its plasticity are controlled by inherent genetic factors. These mediate the modification of RSA, mostly at the level of root branching, in response to a suite of biotic and abiotic factors. Recent progress in the understanding of the molecular basis of these responses suggests that they largely feed through hormone homeostasis and signaling pathways. Novel factors implicated in the regulation of RSA in response to the myriad endogenous and exogenous signals are also increasingly isolated through alternative approaches such as quantitative trait locus analysis.
Resumo:
Complex adaptive polymorphisms are common in nature, but what mechanisms maintain the underlying favorable allelic combinations [1-4]? The convergent evolution of polymorphic social organization in two independent ant species provides a great opportunity to investigate how genomes evolved under parallel selection. Here, we demonstrate that a large, nonrecombining "social chromosome" is associated with social organization in the Alpine silver ant, Formica selysi. This social chromosome shares architectural characteristics with that of the fire ant Solenopsis invicta [2], but the two show no detectable similarity in gene content. The discovery of convergence at two levels-the phenotype and the genetic architecture associated with alternative social forms-points at general genetic mechanisms underlying transitions in social organization. More broadly, our findings are consistent with recent theoretical studies suggesting that suppression of recombination plays a key role in facilitating coordinated shifts in coadapted traits [5, 6].