55 resultados para Semi-arid agrarian ecosystems
Resumo:
This paper considers an alternative perspective to China's exchange rate policy. It studies a semi-open economy where the private sector has no access to international capital markets but the central bank has full access. Moreover, it assumes limited financial development generating a large demand for saving instruments by the private sector. The paper analyzes the optimal exchange rate policy by modeling the central bank as a Ramsey planner. Its main result is that in a growth acceleration episode it is optimal to have an initial real depreciation of the currency combined with an accumulation of reserves, which is consistent with the Chinese experience. This depreciation is followed by an appreciation in the long run. The paper also shows that the optimal exchange rate path is close to the one that would result in an economy with full capital mobility and no central bank intervention.
Resumo:
Mountain regions worldwide are particularly sensitive to on-going climate change. Specifically in the Alps in Switzerland, the temperature has increased twice as fast than in the rest of the Northern hemisphere. Water temperature closely follows the annual air temperature cycle, severely impacting streams and freshwater ecosystems. In the last 20 years, brown trout (Salmo trutta L) catch has declined by approximately 40-50% in many rivers in Switzerland. Increasing water temperature has been suggested as one of the most likely cause of this decline. Temperature has a direct effect on trout population dynamics through developmental and disease control but can also indirectly impact dynamics via food-web interactions such as resource availability. We developed a spatially explicit modelling framework that allows spatial and temporal projections of trout biomass using the Aare river catchment as a model system, in order to assess the spatial and seasonal patterns of trout biomass variation. Given that biomass has a seasonal variation depending on trout life history stage, we developed seasonal biomass variation models for three periods of the year (Autumn-Winter, Spring and Summer). Because stream water temperature is a critical parameter for brown trout development, we first calibrated a model to predict water temperature as a function of air temperature to be able to further apply climate change scenarios. We then built a model of trout biomass variation by linking water temperature to trout biomass measurements collected by electro-fishing in 21 stations from 2009 to 2011. The different modelling components of our framework had overall a good predictive ability and we could show a seasonal effect of water temperature affecting trout biomass variation. Our statistical framework uses a minimum set of input variables that make it easily transferable to other study areas or fish species but could be improved by including effects of the biotic environment and the evolution of demographical parameters over time. However, our framework still remains informative to spatially highlight where potential changes of water temperature could affect trout biomass. (C) 2015 Elsevier B.V. All rights reserved.-
Resumo:
Snow cover is an important control in mountain environments and a shift of the snow-free period triggered by climate warming can strongly impact ecosystem dynamics. Changing snow patterns can have severe effects on alpine plant distribution and diversity. It thus becomes urgent to provide spatially explicit assessments of snow cover changes that can be incorporated into correlative or empirical species distribution models (SDMs). Here, we provide for the first time a with a lower overestimation comparison of two physically based snow distribution models (PREVAH and SnowModel) to produce snow cover maps (SCMs) at a fine spatial resolution in a mountain landscape in Austria. SCMs have been evaluated with SPOT-HRVIR images and predictions of snow water equivalent from the two models with ground measurements. Finally, SCMs of the two models have been compared under a climate warming scenario for the end of the century. The predictive performances of PREVAH and SnowModel were similar when validated with the SPOT images. However, the tendency to overestimate snow cover was slightly lower with SnowModel during the accumulation period, whereas it was lower with PREVAH during the melting period. The rate of true positives during the melting period was two times higher on average with SnowModel with a lower overestimation of snow water equivalent. Our results allow for recommending the use of SnowModel in SDMs because it better captures persisting snow patches at the end of the snow season, which is important when modelling the response of species to long-lasting snow cover and evaluating whether they might survive under climate change.
Resumo:
BACKGROUND: The structure and organisation of ecological interactions within an ecosystem is modified by the evolution and coevolution of the individual species it contains. Understanding how historical conditions have shaped this architecture is vital for understanding system responses to change at scales from the microbial upwards. However, in the absence of a group selection process, the collective behaviours and ecosystem functions exhibited by the whole community cannot be organised or adapted in a Darwinian sense. A long-standing open question thus persists: Are there alternative organising principles that enable us to understand and predict how the coevolution of the component species creates and maintains complex collective behaviours exhibited by the ecosystem as a whole? RESULTS: Here we answer this question by incorporating principles from connectionist learning, a previously unrelated discipline already using well-developed theories on how emergent behaviours arise in simple networks. Specifically, we show conditions where natural selection on ecological interactions is functionally equivalent to a simple type of connectionist learning, 'unsupervised learning', well-known in neural-network models of cognitive systems to produce many non-trivial collective behaviours. Accordingly, we find that a community can self-organise in a well-defined and non-trivial sense without selection at the community level; its organisation can be conditioned by past experience in the same sense as connectionist learning models habituate to stimuli. This conditioning drives the community to form a distributed ecological memory of multiple past states, causing the community to: a) converge to these states from any random initial composition; b) accurately restore historical compositions from small fragments; c) recover a state composition following disturbance; and d) to correctly classify ambiguous initial compositions according to their similarity to learned compositions. We examine how the formation of alternative stable states alters the community's response to changing environmental forcing, and we identify conditions under which the ecosystem exhibits hysteresis with potential for catastrophic regime shifts. CONCLUSIONS: This work highlights the potential of connectionist theory to expand our understanding of evo-eco dynamics and collective ecological behaviours. Within this framework we find that, despite not being a Darwinian unit, ecological communities can behave like connectionist learning systems, creating internal conditions that habituate to past environmental conditions and actively recalling those conditions. REVIEWERS: This article was reviewed by Prof. Ricard V Solé, Universitat Pompeu Fabra, Barcelona and Prof. Rob Knight, University of Colorado, Boulder.
Resumo:
BACKGROUND: Endurance athletes are advised to optimize nutrition prior to races. Little is known about actual athletes' beliefs, knowledge and nutritional behaviour. We monitored nutritional behaviour of amateur ski-mountaineering athletes during 4 days prior to a major competition to compare it with official recommendations and with the athletes' beliefs. METHODS: Participants to the two routes of the 'Patrouille des Glaciers' were recruited (A, 26 km, ascent 1881 m, descent 2341 m, max altitude 3160 m; Z, 53 km, ascent 3994 m, descent 4090 m, max altitude 3650 m). Dietary intake diaries of 40 athletes (21 A, 19 Z) were analysed for energy, carbohydrate, fat, protein and liquid; ten were interviewed about their pre-race nutritional beliefs and behaviour. RESULTS: Despite belief that pre-race carbohydrate, energy and fluid intake should be increased, energy consumption was 2416 ± 696 (mean ± SD) kcal · day(-1), 83 ± 17 % of recommended intake, carbohydrate intake was only 46 ± 13 % of minimal recommended (10 g · kg(-1) · day(-1)) and fluid intake only 2.7 ± 1.0 l · day(-1). CONCLUSIONS: Our sample of endurance athletes did not comply with pre-race nutritional recommendations despite elementary knowledge and belief to be compliant. In these athletes a clear and reflective nutritional strategy was lacking. This suggests a potential for improving knowledge and compliance with recommendations. Alternatively, some recommendations may be unrealistic.
Resumo:
AimGlobal environmental changes challenge traditional conservation approaches based on the selection of static protected areas due to their limited ability to deal with the dynamic nature of driving forces relevant to biodiversity. The Natura 2000 network (N2000) constitutes a major milestone in biodiversity conservation in Europe, but the degree to which this static network will be able to reach its long-term conservation objectives raises concern. We assessed the changes in the effectiveness of N2000 in a Mediterranean ecosystem between 2000 and 2050 under different combinations of climate and land cover change scenarios. LocationCatalonia, Spain. MethodsPotential distribution changes of several terrestrial bird species of conservation interest included in the European Union's Birds Directive were predicted within an ensemble-forecasting framework that hierarchically integrated climate change and land cover change scenarios. Land cover changes were simulated using a spatially explicit fire-succession model that integrates fire management strategies and vegetation encroachment after the abandonment of cultivated areas as the main drivers of landscape dynamics in Mediterranean ecosystems. ResultsOur results suggest that the amount of suitable habitats for the target species will strongly decrease both inside and outside N2000. However, the effectiveness of N2000 is expected to increase in the next decades because the amount of suitable habitats is predicted to decrease less inside than outside this network. Main conclusionsSuch predictions shed light on the key role that the current N2000may play in the near future and emphasize the need for an integrative conservation perspective wherein agricultural, forest and fire management policies should be considered to effectively preserve key habitats for threatened birds in fire-prone, highly dynamic Mediterranean ecosystems. Results also show the importance of considering landscape dynamics and the synergies between different driving forces when assessing the long-term effectiveness of protected areas for biodiversity conservation.
Resumo:
Living bacteria or yeast cells are frequently used as bioreporters for the detection of specific chemical analytes or conditions of sample toxicity. In particular, bacteria or yeast equipped with synthetic gene circuitry that allows the production of a reliable non-cognate signal (e.g., fluorescent protein or bioluminescence) in response to a defined target make robust and flexible analytical platforms. We report here how bacterial cells expressing a fluorescence reporter ("bactosensors"), which are mostly used for batch sample analysis, can be deployed for automated semi-continuous target analysis in a single concise biochip. Escherichia coli-based bactosensor cells were continuously grown in a 13 or 50 nanoliter-volume reactor on a two-layered polydimethylsiloxane-on-glass microfluidic chip. Physiologically active cells were directed from the nl-reactor to a dedicated sample exposure area, where they were concentrated and reacted in 40 minutes with the target chemical by localized emission of the fluorescent reporter signal. We demonstrate the functioning of the bactosensor-chip by the automated detection of 50 μgarsenite-As l(-1) in water on consecutive days and after a one-week constant operation. Best induction of the bactosensors of 6-9-fold to 50 μg l(-1) was found at an apparent dilution rate of 0.12 h(-1) in the 50 nl microreactor. The bactosensor chip principle could be widely applicable to construct automated monitoring devices for a variety of targets in different environments.