68 resultados para SUPEROXIDE ANION
Resumo:
Two soluble exopeptidases were identified in promastigotes of Leishmania major, using an iodinated model tetrapeptide (LIAY) as substrate. Similar activities were also detected in L. major amastigotes and in different species of Leishmania promastigotes. A carboxy- and an aminopeptidase activity were resolved and isolated by anion exchange and gel permeation chromatographies. A single polypeptide of 62 kDa co-purified with the aminopeptidase activity. Optimum pH was neutral for the carboxypeptidase and neutral to alkaline for the aminopeptidase. Both activities were able to hydrolyse a dipeptide substrate (YL), and were inhibited by 20 microM bestatin and 200 microM 1,10-phenanthroline, but not by leupeptin, iodoacetamide and a range of other inhibitors. These results strongly suggest that both enzymes are metalloexopeptidases and thus represent a novel class of soluble peptidases in Leishmania.
Resumo:
Temocapril is a prodrug whose hydrolysis by carboxylesterase 1 (CES1) yields the active ACE inhibitor temocaprilat. This molecular-dynamics (MD) study uses a resolved structure of the human CES1 (hCES1) to investigate some mechanistic details of temocapril hydrolysis. The ionization constants of temocapril (pK1 and pK3) and temocaprilat (pK1, pK2, and pK3) were determined experimentally and computationally using commercial algorithms. The constants so obtained were in good agreement and revealed that temocapril exists mainly in three ionic forms (a cation, a zwitterion, and an anion), whereas temocaprilat exists in four major ionic forms (a cation, a zwitterion, an anion, and a dianion). All these ionic forms were used as ligands in 5-ns MS simulations. While the cationic and zwitterionic forms of temocapril were involved in an ion-pair bond with Glu255 suggestive of an inhibitor behavior, the anionic form remained in a productive interaction with the catalytic center. As for temocaprilat, its cation appeared trapped by Glu255, while its zwitterion and anion made a slow departure from the catalytic site and a partial egress from the protein. Only its dianion was effectively removed from the catalytic site and attracted to the protein surface by Lys residues. A detailed mechanism of product egress emerges from the simulations.
Resumo:
Peroxynitrite is a potent oxidant and nitrating species formed from the reaction between the free radicals nitric oxide and superoxide. An excessive formation of peroxynitrite represents an important mechanism contributing to cell death and dysfunction in multiple cardiovascular pathologies, such as myocardial infarction, heart failure and atherosclerosis. Whereas initial works focused on direct oxidative biomolecular damage as the main route of peroxynitrite toxicity, more recent evidence, mainly obtained in vitro, indicates that peroxynitrite also behaves as a potent modulator of various cell signal transduction pathways. Due to its ability to nitrate tyrosine residues, peroxynitrite affects cellular processes dependent on tyrosine phosphorylation. Peroxynitrite also exerts complex effects on the activity of various kinases and phosphatases, resulting in the up- or downregulation of signalling cascades, in a concentration- and cell-dependent manner. Such roles of peroxynitrite in the redox regulation of key signalling pathways for cardiovascular homeostasis, including protein kinase B and C, the MAP kinases, Nuclear Factor Kappa B, as well as signalling dependent on insulin and the sympatho-adrenergic system are presented in detail in this review.
Resumo:
Early studies showed that the administration of the anti-inflammatory cytokine interleukin-10 (IL10) protects against permanent middle cerebral artery occlusion (MCAO) in mice. In this study, transgenic mice expressing murine IL10 (IL10T) directed by the major histocompatibility complex Ea promoter were produced and used to explore the effect of chronically increased IL10 levels on MCAO-related molecular mechanisms. IL10 was over-expressed in astrocytes, microglia, and endothelial brain cells in IL10T compared with wild type mice. Four days following MCAO, IL10T mice showed a 40% reduction in infarct size which was associated to significantly reduced levels of active caspase 3 compared with wild type mice. Under basal conditions, anti-inflammatory factors such as nerve growth factor and GSH were up-regulated and the pro-inflammatory cytokine IL1beta was down-regulated in the brain of IL10T animals. In addition, these mice displayed increased basal GSH levels in microglial and endothelial cells as well as a marked increase in manganese superoxide dismutase in endothelial lining blood vessels. Following ischemia, IL10T mice showed a marked reduction in pro-inflammatory cytokines, including tumor necrosis factor-alpha, interferon-gamma, and IL1beta. Our data indicate that constitutive IL10 over-expression is associated with a striking resistance to cerebral ischemia that may be attributed to changes in the basal redox properties of glial/endothelial cells.
Resumo:
SLC26A2-related dysplasias encompass a spectrum of diseases: from lethal achondrogenesis type 1B (ACG1B; MIM #600972) and atelosteogenesis type 2 (AO2; MIM #256050) to classical diastrophic dysplasia (cDTD; MIM #222600) and recessive multiple epiphyseal dysplasia (rMED; MIM #226900). This study aimed at characterizing clinically, radiologically and molecularly 14 patients affected by non-lethal SLC26A2-related dysplasias and at evaluating genotype-phenotype correlation. Phenotypically, eight patients were classified as cDTD, four patients as rMED and two patients had an intermediate phenotype (mild DTD - mDTD, previously 'DTD variant'). The Arg279Trp mutation was present in all patients, either in homozygosity (resulting in rMED) or in compound heterozygosity with the known severe alleles Arg178Ter or Asn425Asp (resulting in DTD) or with the mutation c.727-1G>C (causing mDTD). The 'Finnish mutation', c.-26+2T>C, and the p.Cys653Ser, both frequent mutations in non-Portuguese populations, were not identified in any of the patients of our cohort and are probably very rare in the Portuguese population. A targeted mutation analysis for p.Arg279Trp and p.Arg178Ter in the Portuguese population allows the identification of approximately 90% of the pathogenic alleles.
Resumo:
BACKGROUND: Mutations in the sulfate transporter gene SLC26A2 (DTDST) cause a continuum of skeletal dysplasia phenotypes that includes achondrogenesis type 1B (ACG1B), atelosteogenesis type 2 (AO2), diastrophic dysplasia (DTD), and recessive multiple epiphyseal dysplasia (rMED). In 1972, de la Chapelle et al reported two siblings with a lethal skeletal dysplasia, which was denoted "neonatal osseous dysplasia" and "de la Chapelle dysplasia" (DLCD). It was suggested that DLCD might be part of the SLC26A2 spectrum of phenotypes, both because of the Finnish origin of the original family and of radiographic similarities to ACG1B and AO2. OBJECTIVE: To test the hypothesis whether SLC26A2 mutations are responsible for DLCD. METHODS: We studied the DNA from the original DLCD family and from seven Finnish DTD patients in whom we had identified only one copy of IVS1+2T>C, the common Finnish mutation. A novel SLC26A2 mutation was found in all subjects, inserted by site-directed mutagenesis in a vector harbouring the SLC26A2 cDNA, and expressed in sulfate transport deficient Chinese hamster ovary (CHO) cells to measure sulfate uptake activity. RESULTS: We identified a hitherto undescribed SLC26A2 mutation, T512K, homozygous in the affected subjects and heterozygous in both parents and in the unaffected sister. T512K was then identified as second pathogenic allele in the seven Finnish DTD subjects. Expression studies confirmed pathogenicity. CONCLUSIONS: DLCD is indeed allelic to the other SLC26A2 disorders. T512K is a second rare "Finnish" mutation that results in DLCD at homozygosity and in DTD when compounded with the milder, common Finnish mutation.
Resumo:
GLUT9 (SLC2A9) is a newly described urate transporter whose function, characteristics, and localization have just started to be elucidated. Some transport properties of human GLUT9 have been studied in the Xenopus laevis oocyte expression system, but the type of transport (uniport, coupled transport system, stoichiometry ... .) is still largely unknown. We used the same experimental system to characterize in more detail the transport properties of mouse GLUT9, its sensitivity to several uricosuric drugs, and the specificities of two splice variants, mGLUT9a and mGLUT9b. [(14)C]urate uptake measurements show that both splice variants are high-capacity urate transporters and have a K(m) of approximately 650 microM. The well-known uricosuric agents benzbromarone (500 microM) and losartan (1 mM) inhibit GLUT9-mediated urate uptake by 90 and 50%, respectively. Surprisingly, phloretin, a glucose-transporter blocker, inhibits [(14)C]urate uptake by approximately 50% at 1 mM. Electrophysiological measurements suggest that urate transport by mouse GLUT9 is electrogenic and voltage dependent, but independent of the Na(+) and Cl(-) transmembrane gradients. Taken together, our results suggest that GLUT9 works as a urate (anion) uniporter. Finally, we show by RT-PCR performed on RNA from mouse kidney microdissected tubules that GLUT9a is expressed at low levels in proximal tubules, while GLUT9b is specifically expressed in distal convoluted and connecting tubules. Expression of mouse GLUT9 in the kidney differs from that of human GLUT9, which could account for species differences in urate handling.
Resumo:
Peroxynitrite is a strong biological oxidant formed from the reaction between two free radicals, superoxide and nitric oxide. It inflicts serious damages to most biomolecules, including proteins, lipids and nucleic acids, either through direct oxidation or through the secondary generation of highly reactive free radicals. When such damage reaches a critical threshold, cells eventually die by necrosis or apoptosis. An excessive production of peroxynitrite is instrumental in the development of organ damage and dysfunction in conditions such as circulatory shock and ischemia-reperfusion. In such circumstances, various synthetic metalloporphyrins, able to degrade peroxynitrite, disclose important beneficial effects in animal models, and might therefore represent novel pharmacological agents in the future.
Resumo:
PURPOSE OF REVIEW: Vitamin C is not only an essential nutrient involved in many anabolic pathways, but also an important player of the endogenous antioxidant defense. Low plasma levels are very common in critical care patients and may reflect severe deficiency states. RECENT FINDINGS: Vitamin C scavenges reactive oxygen species such as superoxide and peroxynitrite in plasma and cells (preventing damage to proteins, lipids and DNA), prevents occludin dephosphorylation and loosening of the tight junctions. Ascorbate improves microcirculatory flow impairment by inhibiting tumor-necrosis-factor-induced intracellular adhesion molecule expression, which triggers leukocyte stickiness and slugging. Clinical trials in sepsis, trauma and major burns testing high-dose vitamin C show clinical benefit. Restoration of normal plasma levels in inflammatory patients requires the administration of 3 g/day for several days, which is 30 times the daily recommended dose. SUMMARY: The recent research on the modulation of oxidative stress and endothelial protection offer interesting therapeutic perspectives, based on the biochemical evidence, with limited or even absent side-effects.
Resumo:
BACKGROUND AND OBJECTIVE: The in vivo implication of various cytochrome P450 (CYP) isoforms and of P-glycoprotein on methadone kinetics is unclear. We aimed to thoroughly examine the genetic factors influencing methadone kinetics and response to treatment. METHODS: Genotyping for CYP1A2, CYP2B6, CYP2C9, CYP2C19, CYP2D6, CYP3A4, CYP3A5, ABCB1, and UGT2B7 polymorphisms was performed in 245 patients undergoing methadone maintenance treatment. To assess CYP3A activity, the patients were phenotyped with midazolam. RESULTS: The patients with lower CYP3A activity presented higher steady-state trough (R,S)-methadone plasma levels (4.3, 3.0, and 2.3 ng/mL x mg for low, medium, and high activity, respectively; P = .0002). As previously reported, CYP2B6*6/*6 carriers had significantly higher trough (S)-methadone plasma levels (P = .0001) and a trend toward higher (R)-methadone plasma levels (P = .07). CYP2D6 ultrarapid metabolizers presented lower trough (R,S)-methadone plasma levels compared with the extensive or intermediate metabolizers (2.4 and 3.3 ng/mL x mg, respectively; P = .04), whereas CYP2D6 poor metabolizer status showed no influence. ABCB1 3435TT carriers presented lower trough (R,S)-methadone plasma levels (2.7 and 3.4 ng/mL . mg for 3435TT and 3435CC carriers, respectively; P = .01). The CYP1A2, CYP2C9, CYP2C19, CYP3A5, and UGT2B7 genotypes did not influence methadone plasma levels. Only CYP2B6 displayed a stereoselectivity in its activity. CONCLUSION: In vivo, CYP3A4 and CYP2B6 are the major CYP isoforms involved in methadone metabolism, with CYP2D6 contributing to a minor extent. ABCB1 genetic polymorphisms also contribute slightly to the interindividual variability of methadone kinetics. The genetic polymorphisms of these 4 proteins had no influence on the response to treatment and only a small influence on the dose requirement of methadone.
Resumo:
Background: Microsporum canis is a dermatophyte responsible for cutaneous superficial mycoses in domestic carnivores and humans. The pathogenesis of dermatophytoses, including M. canis infections, remains poorly understood. Secreted proteases including members of the subtilisin family are thought to be involved in the infection process. In particular the subtilisin Sub6 could represent a major virulence factor.Objective: The aim of this work was to (i) isolate the M. canis SUB6 genomic DNA and cDNA (ii) produce Sub6 as a recombinant protease (rSub6) and (iii) produce a specific anti-Sub6 polyclonal serum. Material and methods: Genomic SUB6 was amplified by PCR using specific primers and M. canis IHEM 21239 DNA as a target. The SUB6 cDNA was obtained by reverse transcriptase (RT)-PCR using total RNA extracted from the same M. canis strain grown in liquid medium containing feline keratin as unique nitrogen source. Both SUB6 cDNA and genomic DNA were sequenced. The SUB6 cDNA was cloned in pPICZA to produce recombinant Sub6 (rSub6) in Pichia pastoris KM71. This protease rSub6 was produced in methanol medium at a yield of 30 mg ml)1 and purified by anion exchange chromatography using a DEAE-sepharose column. Polyclonal antibodies against purified rSub6 were produced in a rabbit using a standard immunization procedure with saponin as the adjuvant. Seventy days after the first immunization, serum was collected and IgG were purified by affinity chromatography.Results: The coding sequence for M. canis SUB6 from genomic DNA contains 1410 bp and 3 introns, while the cDNA contains a 1221 bp open reading frame. Deduced amino acid sequence analysis revealed that Sub6 is synthesized as a 406 amino acids preproprotein. The predicted catalytic domain has 286 amino acids, a molecular mass of 29.1 kDa and five potential N-glycosylation sites. SDS-PAGE of rSub6 revealed a single polypeptide chain with an apparent molecular mass of 37 kDa. Purified rabbit IgG were shown to be specific for Sub6 using ELISA.Conclusion: We have characterized for the first time Sub6 from a dermatophyte species as a recombinant secreted active enzyme and purified it until homogeneity. Active rSub6 and Sub6 specific antiserum will be used to further study the role of M. canis Sub6 protease in pathogenesis, notably the pattern of in vivo Sub6 secretion in different host species.
Resumo:
BACKGROUND: An ADME (absorption, distribution, metabolism and excretion)-pharmacogenetics association study may identify functional variants relevant to the pharmacokinetics of lopinavir co-formulated with ritonavir (LPV/r), a first-line anti-HIV agent. METHODS: An extensive search of literature and web resources helped select ADME genes and single nucleotide polymorphisms (SNPs, functional and HapMap tagging SNPs) with a proven or potentially relevant role in LPV/r pharmacokinetics. The study followed a two-stage design. Stage 1 (discovery) considered a Caucasian population (n=638) receiving LPV/r, where we selected 117 individuals with low LPV clearance (cases) and 90 individuals with high clearance (controls). Genotyping was performed by a 1536-SNP customized GoldenGate Illumina BeadArray. Stage 2 (confirmation) represented a replication study of candidate SNPs from the stage 1 in 148 individuals receiving LPV/r. The analysis led to formal population pharmacokinetic-pharmacogenetic modeling of demographic, environmental and candidate SNP effects. RESULTS: One thousand three hundred and eighty SNPs were successfully genotyped. Nine SNPs prioritized by the stage 1 analysis were brought to replication. Stage 2 confirmed the contribution of two functional SNPs in SLCO1B1, one functional SNP in ABCC2 and a tag SNP of the CYP3A locus in addition to body weight effect and ritonavir coadministration. According to the population pharmacokinetic-pharmacogenetic model, genetic variants explained 5% of LPV variability. Individuals homozygous rs11045819 (SLCO1B1*4) had a clearance of 12.6 l/h, compared with 5.4 l/h in the reference group, and 3.9 l/h in individuals with two or more variant alleles of rs4149056 (SLCO1B1*5), rs717620 (ABCC2) or rs6945984 (CYP3A). A subanalysis confirmed that although a significant part of the variance in LPV clearance was attributed to fluctuation in ritonavir levels, genetic variants had an additional effect on LPV clearance. CONCLUSION: The two-stage strategy successfully identified genetic variants affecting LPV/r pharmacokinetics. Such a general approach of ADME pharmacogenetics should be generalized to other drugs.
Resumo:
Training has been shown to induce cardioprotection. The mechanisms involved remain still poorly understood. Aims of the study were to examine the relevance of training intensity on myocardial protection against ischemia/reperfusion (I/R) injury, and to which extent the beneficial effects persist after training cessation in rats. Sprague-Dawley rats trained at either low (60% [Formula: see text]) or high (80% [Formula: see text]) intensity for 10 weeks. An additional group of highly trained rats was detrained for 4 weeks. Untrained rats served as controls. At the end of treatment, rats of all groups were split into two subgroups. In the former, rats underwent left anterior descending artery (LAD) ligature for 30 min, followed by 90-min reperfusion, with subsequent measurement of the infarct size. In the latter, biopsies were taken to measure heat-shock proteins (HSP) 70/72, vascular endothelial growth factor (VEGF) protein levels, and superoxide dismutase (SOD) activity. Training reduced infarct size proportionally to training intensity. With detraining, infarct size increased compared to highly trained rats, maintaining some cardioprotection with respect to controls. Cardioprotection was proportional to training intensity and related to HSP70/72 upregulation and Mn-SOD activity. The relationship with Mn-SOD was lost with detraining. VEGF protein expression was not affected by either training or detraining. Stress proteins and antioxidant defenses might be involved in the beneficial effects of long-term training as a function of training intensity, while HSP70 may be one of the factors accounting for the partial persistence of myocardial protection against I/R injury in detrained rats.
Resumo:
Astrocytes emerge as key players in motor neuron degeneration in Amyotrophic Lateral Sclerosis (ALS). Whether astrocytes cause direct damage by releasing toxic factors or contribute indirectly through the loss of physiological functions is unclear. Here we identify in the hSOD1(G93A) transgenic mouse model of ALS a degenerative process of the astrocytes, restricted to those directly surrounding spinal motor neurons. This phenomenon manifests with an early onset and becomes significant concomitant with the loss of motor cells and the appearance of clinical symptoms. Contrary to wild-type astrocytes, mutant hSOD1-expressing astrocytes are highly vulnerable to glutamate and undergo cell death mediated by the metabotropic type-5 receptor (mGluR5). Blocking mGluR5 in vivo slows down astrocytic degeneration, delays the onset of the disease and slightly extends survival in hSOD1(G93A) transgenic mice. We propose that excitotoxicity in ALS affects both motor neurons and astrocytes, favouring their local interactive degeneration. This new mechanistic hypothesis has implications for therapeutic interventions.Cell Death and Differentiation advance online publication, 11 July 2008; doi:10.1038/cdd.2008.99.
Resumo:
It has not been well established whether the mechanisms participating in pH regulation in the anoxic-reoxygenated developing myocardium resemble those operating in the adult. We have specially examined the importance of Na+/H+ exchange (NHE) and HCO3-dependent transports in cardiac activity after changes in extracellular pH (pHo). Spontaneously contracting hearts isolated from 4-day-old chick embryos were submitted to single or repeated anoxia (1 min) followed by reoxygenation (10 min). The chronotropic, dromotropic and inotropic responses of the hearts were determined in standard HCO3- buffer at pHo 7.4 and at pHo 6.5 (hypercapnic acidosis). In distinct experiments, acidotic anoxia preceded reoxygenation at pHo 7.4. NHE was blocked with amiloride derivative HMA (1 micro mol/l) and HCO3-dependent transports were inactivated by replacement of HCO3 or blockade with stilbene derivative DIDS (100 micro mol/l). Anoxia caused transient tachycardia, depressed mechanical function and induced contracture. Reoxygenation temporarily provoked cardiac arrest, atrio-ventricular (AV) block, arrhythmias and depression of contractility. Addition of DIDS or substitution of HCO3 at pHo 7.4 had the same effects as acidosis per se, i.e. shortened contractile activity and increased incidence of arrhythmias during anoxia, prolonged cardioplegia and provoked arrhythmias at reoxygenation. Under anoxia at pHo 6.5/reoxygenation at pHo 7.4, cardioplegia, AV block and arrhythmias were all markedly prolonged. Interestingly, in the latter protocol, DIDS suppressed AV block and arrhythmias during reoxygenation, whereas HMA had no effect. Thus, intracellular pH regulation in the anoxic-reoxygenated embryonic heart appears to depend predominantly on HCO3 availability and transport. Furthermore, pharmacological inhibition of anion transport can protect against reoxygenation-induced dysfunction.