231 resultados para Risk Assessment Code
Resumo:
To evaluate how young physicians in training perceive their patients' cardiovascular risk based on the medical charts and their clinical judgment. Cross sectional observational study. University outpatient clinic, Lausanne, Switzerland. Two hundred hypertensive patients and 50 non-hypertensive patients with at least one cardiovascular risk factor. Comparison of the absolute 10-year cardiovascular risk calculated by a computer program based on the Framingham score and adapted for physicians by the WHO/ISH with the perceived risk as assessed clinically by the physicians. Physicians underestimated the 10-year cardiovascular risk of their patients compared to that calculated with the Framingham score. Concordance between methods was 39% for hypertensive patients and 30% for non-hypertensive patients. Underestimation of cardiovascular risks for hypertensive patients was related to the fact they had a stabilized systolic blood pressure under 140 mm Hg (OR = 2.1 [1.1; 4.1]). These data show that young physicians in training often have an incorrect perception of the cardiovascular risk of their patients with a tendency to underestimate the risk. However, the calculated risk could also be slightly overestimated when applying the Framingham Heart Study model to a Swiss population. To implement a systematic evaluation of risk factors in primary care a greater emphasis should be placed on the teaching of cardiovascular risk evaluation and on the implementation of quality improvement programs.
Resumo:
Background: Cardio-vascular diseases (CVD), their well established risk factors (CVRF) and mental disorders are common and co-occur more frequently than would be expected by chance. However, the pathogenic mechanisms and course determinants of both CVD and mental disorders have only been partially identified.Methods/Design: Comprehensive follow-up of CVRF and CVD with a psychiatric exam in all subjects who participated in the baseline cross-sectional CoLaus study (2003-2006) (n=6'738) which also included a comprehensive genetic assessment. The somatic investigation will include a shortened questionnaire on CVRF, CV events and new CVD since baseline and measurements of the same clinical and biological variables as at baseline. In addition, pro-inflammatory markers, persistent pain and sleep patterns and disorders will be assessed. In the case of a new CV event, detailed information will be abstracted from medical records. Similarly, data on the cause of death will be collected from the Swiss National Death Registry. The comprehensive psychiatric investigation of the CoLaus/PsyCoLaus study will use contemporary epidemiological methods including semi-structured diagnostic interviews, experienced clinical interviewers, standardized diagnostic criteria including threshold according to DSM-IV and sub-threshold syndromes and supplementary information on risk and protective factors for disorders. In addition, screening for objective cognitive impairment will be performed in participants older than 65 years.Discussion: The combined CoLaus/PsyCoLaus sample provides a unique opportunity to obtain prospective data on the interplay between CVRF/CVD and mental disorders, overcoming limitations of previous research by bringing together a comprehensive investigation of both CVRF and mental disorders as well as a large number of biological variables and a genome-wide genetic assessment in participants recruited from the general population.
Resumo:
The introduction of engineered nanostructured materials into a rapidly increasing number of industrial and consumer products will result in enhanced exposure to engineered nanoparticles. Workplace exposure has been identified as the most likely source of uncontrolled inhalation of engineered aerosolized nanoparticles, but release of engineered nanoparticles may occur at any stage of the lifecycle of (consumer) products. The dynamic development of nanomaterials with possibly unknown toxicological effects poses a challenge for the assessment of nanoparticle induced toxicity and safety.In this consensus document from a workshop on in-vitro cell systems for nanoparticle toxicity testing11Workshop on 'In-Vitro Exposure Studies for Toxicity Testing of Engineered Nanoparticles' sponsored by the Association for Aerosol Research (GAeF), 5-6 September 2009, Karlsruhe, Germany. an overview is given of the main issues concerning exposure to airborne nanoparticles, lung physiology, biological mechanisms of (adverse) action, in-vitro cell exposure systems, realistic tissue doses, risk assessment and social aspects of nanotechnology. The workshop participants recognized the large potential of in-vitro cell exposure systems for reliable, high-throughput screening of nanoparticle toxicity. For the investigation of lung toxicity, a strong preference was expressed for air-liquid interface (ALI) cell exposure systems (rather than submerged cell exposure systems) as they more closely resemble in-vivo conditions in the lungs and they allow for unaltered and dosimetrically accurate delivery of aerosolized nanoparticles to the cells. An important aspect, which is frequently overlooked, is the comparison of typically used in-vitro dose levels with realistic in-vivo nanoparticle doses in the lung. If we consider average ambient urban exposure and occupational exposure at 5mg/m3 (maximum level allowed by Occupational Safety and Health Administration (OSHA)) as the boundaries of human exposure, the corresponding upper-limit range of nanoparticle flux delivered to the lung tissue is 3×10-5-5×10-3μg/h/cm2 of lung tissue and 2-300particles/h/(epithelial) cell. This range can be easily matched and even exceeded by almost all currently available cell exposure systems.The consensus statement includes a set of recommendations for conducting in-vitro cell exposure studies with pulmonary cell systems and identifies urgent needs for future development. As these issues are crucial for the introduction of safe nanomaterials into the marketplace and the living environment, they deserve more attention and more interaction between biologists and aerosol scientists. The members of the workshop believe that further advances in in-vitro cell exposure studies would be greatly facilitated by a more active role of the aerosol scientists. The technical know-how for developing and running ALI in-vitro exposure systems is available in the aerosol community and at the same time biologists/toxicologists are required for proper assessment of the biological impact of nanoparticles.
Resumo:
Addressing the risks of nanoparticles requires knowledge about release into the environment and occupational exposure. However, such information currently is not systematically collected; therefore, this risk assessment lacks quantitative data. The goal was to evaluate the current level of nanoparticle usage in Swiss industry as well as health, safety, and environmental measures, and the number of potentially exposed workers. A representative, stratified mail survey was conducted among 1626 clients of the Swiss National Accident Insurance Fund (SUVA), which insures 80,000 manufacturing firms, representing 84% of all Swiss manufacturing companies (947 companies answered the survey for a 58.3% response rate). The extrapolation to all Swiss manufacturing companies results in 1309 workers (95% confidence interval [CI]: 1073 to 1545) potentially exposed to nanoparticles in 586 companies (95% CI: 145 to 1027). This corresponds to 0.08% of workers (95% CI: 0.06% to 0.09%) and to 0.6% of companies (95% CI: 0.2% to 1.1%). The industrial chemistry sector showed the highest percentage of companies using nanoparticles (21.2%). Other important sectors also reported nanoparticles. Personal protection equipment was the predominant protection strategy. Only a few applied specific environmental protection measures. This is the first nationwide representative study on nanoparticle use in the manufacturing sector. The information gained can be used for quantitative risk assessment. It can also help policymakers design strategies to support companies developing a safer use of nanomaterial. Notingthe current low use of nanoparticles, there is still time to proactively introduce protective methods. If the predicted "nano-revolution" comes true, now is the time to take action. [Supplementary materials are available for this article. Go to the publisher's online edition of Journal of occupational and Environmental Hygiene for the following free supplemental resource: a pdf file containing a detailed description of the approach to statistical analyses, English translation of the questionnaire, additional information for Figure 1, and additional information for the SUVA-code.] [Authors]
Resumo:
SUMMARY: BMD and clinical risk factors predict hip and other osteoporotic fractures. The combination of clinical risk factors and BMD provide higher specificity and sensitivity than either alone. INTRODUCTION AND HYPOTHESES: To develop a risk assessment tool based on clinical risk factors (CRFs) with and without BMD. METHODS: Nine population-based studies were studied in which BMD and CRFs were documented at baseline. Poisson regression models were developed for hip fracture and other osteoporotic fractures, with and without hip BMD. Fracture risk was expressed as gradient of risk (GR, risk ratio/SD change in risk score). RESULTS: CRFs alone predicted hip fracture with a GR of 2.1/SD at the age of 50 years and decreased with age. The use of BMD alone provided a higher GR (3.7/SD), and was improved further with the combined use of CRFs and BMD (4.2/SD). For other osteoporotic fractures, the GRs were lower than for hip fracture. The GR with CRFs alone was 1.4/SD at the age of 50 years, similar to that provided by BMD (GR = 1.4/SD) and was not markedly increased by the combination (GR = 1.4/SD). The performance characteristics of clinical risk factors with and without BMD were validated in eleven independent population-based cohorts. CONCLUSIONS: The models developed provide the basis for the integrated use of validated clinical risk factors in men and women to aid in fracture risk prediction.
Resumo:
Given the significant impact the use of glucocorticoids can have on fracture risk independent of bone density, their use has been incorporated as one of the clinical risk factors for calculating the 10-year fracture risk in the World Health Organization's Fracture Risk Assessment Tool (FRAX(®)). Like the other clinical risk factors, the use of glucocorticoids is included as a dichotomous variable with use of steroids defined as past or present exposure of 3 months or more of use of a daily dose of 5 mg or more of prednisolone or equivalent. The purpose of this report is to give clinicians guidance on adjustments which should be made to the 10-year risk based on the dose, duration of use and mode of delivery of glucocorticoids preparations. A subcommittee of the International Society for Clinical Densitometry and International Osteoporosis Foundation joint Position Development Conference presented its findings to an expert panel and the following recommendations were selected. 1) There is a dose relationship between glucocorticoid use of greater than 3 months and fracture risk. The average dose exposure captured within FRAX(®) is likely to be a prednisone dose of 2.5-7.5 mg/day or its equivalent. Fracture probability is under-estimated when prednisone dose is greater than 7.5 mg/day and is over-estimated when the prednisone dose is less than 2.5 mg/day. 2) Frequent intermittent use of higher doses of glucocorticoids increases fracture risk. Because of the variability in dose and dosing schedule, quantification of this risk is not possible. 3) High dose inhaled glucocorticoids may be a risk factor for fracture. FRAX(®) may underestimate fracture probability in users of high dose inhaled glucocorticoids. 4) Appropriate glucocorticoid replacement in individuals with adrenal insufficiency has not been found to increase fracture risk. In such patients, use of glucocorticoids should not be included in FRAX(®) calculations.
Resumo:
OBJECTIVE: In 2005-2006, several studies noted an increased risk of cardiovascular birth defects associated with maternal use of paroxetine compared with other antidepressants in the same class. In this study, the authors sought to determine whether paroxetine was associated with an increased risk of cardiovascular defects in infants of women exposed to the drug during the first trimester of pregnancy. METHOD: From teratology information services around the world, the authors collected prospectively ascertained, unpublished cases of infants exposed to paroxetine early in the first trimester of pregnancy and compared them with an unexposed cohort. The authors also contacted the authors of published database studies on antidepressants as a class to determine how many of the women in those studies had been exposed to paroxetine and the rates of cardiovascular defects in their infants. RESULTS: The authors were able to ascertain the outcomes of 1,174 infants from eight services. The rates of cardiac defects in the paroxetine group and in the unexposed group were both 0.7%. The rate in the database studies (2,061 cases from four studies) was 1.5%. CONCLUSIONS: Paroxetine does not appear to be associated with an increased risk of cardiovascular defects following use in early pregnancy, as the incidence in more than 3,000 infants was well within the population incidence of approximately 1%.
Resumo:
Most available studies on lead smelter emissions deal with the environmental impact of outdoor particles, but only a few focus on air quality at workplaces. The objective of this study is to physically and chemically characterize the Pb-rich particles emitted at different workplaces in a lead recycling plant. A multi-scale characterization was conducted from bulk analysis to the level of individual particles, to assess the particles properties in relation with Pb speciation and availability. Process PM from various origins were sampled and then compared; namely Furnace and Refining PM respectively present in the smelter and at refinery workplaces, Emissions PM present in channeled emissions.These particles first differed by their morphology and size distribution, with finer particles found in emissions. Differences observed in chemical composition could be explained by the industrial processes. All PM contained the same major phases (Pb, PbS, PbO, PbSO4 and PbO·PbSO4) but differed on the nature and amount of minor phases. Due to high content in PM, Pb concentrations in the CaCl2 extractant reached relatively high values (40 mg.L-1). However, the ratios (soluble/total) of CaCl2 exchangeable Pb were relatively low (< 0.02%) in comparison with Cd (up to 18%). These results highlight the interest to assess the soluble fractions of all metals (minor and major) and discuss both total metal concentrations and ratios for risk evaluations. In most cases metal extractability increased with decreasing size of particles, in particular, lead exchangeability was highest for channeled emissions. Such type of study could help in the choice of targeted sanitary protection procedures and for further toxicological investigations. In the present context, particular attention is given to Emissions and Furnace PM. Moreover, exposure to other metals than Pb should be considered. [Authors]
Resumo:
BACKGROUND: The SYNTAX score (SXscore), an angiographic score reflecting coronary lesion complexity, predicts clinical outcomes in patients with left main or multivessel disease, and in patients with ST-segment elevation myocardial infarction undergoing primary PCI. The clinical SXscore (CSS) integrates the SXscore and clinical variables (age, ejection fraction, serum creatinine) into a single score. We analyzed these scores in elderly patients with acute coronary syndrome (ACS) undergoing primary PCI. The purpose of this analysis was not to decide which patients should undergo PCI, but to predict clinical outcomes in this population. METHODS: The SXscore was determined in a consecutive series of 114 elderly patients (mean age, 79.6 ± 4.1 years) undergoing primary PCI for ACS. Outcomes were stratified according to SXscore tertiles: SXLOW ≤15 (n = 39), 15< SXMID <23 (n = 40), and SXHIGH ≥23 (n = 35). The primary endpoint was all-cause mortality at 30 days. Secondary endpoints were nonfatal major adverse cardiac and cerebrovascular events (MACCE) at 30 days, and 1-year outcomes in patients discharged alive. RESULTS: Mortality at 30 days was higher in the SXHIGH group compared with the aggregate SXLOW+MID group (37.1% vs 5.1%; P<.0001), and in the CSSHIGH group compared with the aggregate CSSLOW+MID group (25.5% vs 1.4%; P=.0001). MACCE rates at 30 days were similar among SXscore tertiles. The CSS predicted 1-year MACCE rates (12.1% for CSSHIGH vs 3.1% for CSSLOW+MID; P=.03). CONCLUSIONS: The SXscore predicts 30-day mortality in elderly patients with ACS undergoing primary PCI. In patients discharged alive, the CSS predicts risk of MACCE at 1 year.
Resumo:
BACKGROUND: Physicians need a specific risk-stratification tool to facilitate safe and cost-effective approaches to the management of patients with cancer and acute pulmonary embolism (PE). The objective of this study was to develop a simple risk score for predicting 30-day mortality in patients with PE and cancer by using measures readily obtained at the time of PE diagnosis. METHODS: Investigators randomly allocated 1,556 consecutive patients with cancer and acute PE from the international multicenter Registro Informatizado de la Enfermedad TromboEmbólica to derivation (67%) and internal validation (33%) samples. The external validation cohort for this study consisted of 261 patients with cancer and acute PE. Investigators compared 30-day all-cause mortality and nonfatal adverse medical outcomes across the derivation and two validation samples. RESULTS: In the derivation sample, multivariable analyses produced the risk score, which contained six variables: age > 80 years, heart rate ≥ 110/min, systolic BP < 100 mm Hg, body weight < 60 kg, recent immobility, and presence of metastases. In the internal validation cohort (n = 508), the 22.2% of patients (113 of 508) classified as low risk by the prognostic model had a 30-day mortality of 4.4% (95% CI, 0.6%-8.2%) compared with 29.9% (95% CI, 25.4%-34.4%) in the high-risk group. In the external validation cohort, the 18% of patients (47 of 261) classified as low risk by the prognostic model had a 30-day mortality of 0%, compared with 19.6% (95% CI, 14.3%-25.0%) in the high-risk group. CONCLUSIONS: The developed clinical prediction rule accurately identifies low-risk patients with cancer and acute PE.