58 resultados para Rhesus Theta Defensin


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rotaviruses are the major cause of severe diarrhea in infants and young children worldwide. Due to their restricted site of replication, i.e., mature enterocytes, local intestinal antibodies have been proposed to play a major role in protective immunity. Whether secretory immunoglobulin A (IgA) antibodies alone can provide protection against rotavirus diarrhea has not been fully established. To address this question, a library of IgA monoclonal antibodies (MAbs) previously developed against different proteins of rhesus rotavirus was used. A murine hybridoma "backpack tumor" model was established to examine if a single MAb secreted onto mucosal surfaces via the normal epithelial transport pathway was capable of protecting mice against diarrhea upon oral challenge with rotavirus. Of several IgA and IgG MAbs directed against VP8 and VP6 of rotavirus, only IgA VP8 MAbs (four of four) were found to protect newborn mice from diarrhea. An IgG MAb recognizing the same epitope as one of the IgA MAbs tested failed to protect mice from diarrhea. We also investigated if antibodies could be transcytosed in a biologically active form from the basolateral domain to the apical domain through filter-grown Madin-Darby canine kidney (MDCK) cells expressing the polymeric immunoglobulin receptor. Only IgA antibodies with VP8 specificity (four of four) neutralized apically administered virus. The results support the hypothesis that secretory IgA antibodies play a major role in preventing rotavirus diarrhea. Furthermore, the results show that the in vivo and in vitro methods described are useful tools for exploring the mechanisms of viral mucosal immunity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: To report a novel phenotype of autosomal dominant atypical congenital cataract associated with variable expression of microcornea, microphthalmia, and iris coloboma linked to chromosome 2. Molecular analysis of this phenotype may improve our understanding of anterior segment development. DESIGN: Observational case study, genome linkage analysis, and gene mutation screening. PARTICIPANTS: Three families, 1 Egyptian and 2 Belgians, with a total of 31 affected were studied. METHODS: Twenty-one affected subjects and 9 first-degree relatives underwent complete ophthalmic examination. In the Egyptian family, exclusion of PAX6, CRYAA, and MAF genes was demonstrated by haplotype analysis using microsatellite markers on chromosomes 11, 16, and 21. Genome-wide linkage analysis was then performed using 385 microsatellite markers on this family. In the 2 Belgian families, the PAX6 gene was screened for mutations by direct sequencing of all exons. MAIN OUTCOME MEASURES: Phenotype description, genome-wide linkage of the phenotype, linkage to the PAX6, CRYAA, and MAF genes, and mutation detection in the PAX6 gene. RESULTS: Affected members of the 3 families had bilateral congenital cataracts inherited in an autosomal dominant pattern. A novel form of hexagonal nuclear cataract with cortical riders was expressed. Among affected subjects with available data, 95% had microcornea, 39% had microphthalmia, and 38% had iris coloboma. Seventy-five percent of the colobomata were atypical, showing a nasal superior location in 56%. A positive lod score of 4.86 was obtained at theta = 0 for D2S2309 on chromosome 2, a 4.9-Mb common haplotype flanked by D2S2309 and D2S2358 was obtained in the Egyptian family, and linkage to the PAX6, CRYAA, or MAF gene was excluded. In the 2 Belgian families, sequencing of the junctions and all coding exons of PAX6 did not reveal any molecular change. CONCLUSIONS: We describe a novel phenotype that includes the combination of a novel form of congenital hexagonal cataract, with variably expressed microcornea, microphthalmia, and atypical iris coloboma, not caused by PAX6 and mapping to chromosome 2. FINANCIAL DISCLOSURE(S): The authors have no proprietary or commercial interest in any materials discussed in this article.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A loss in the necessary amount of sleep alters expression of genes and proteins implicated in brain plasticity, but key proteins that render neuronal circuits sensitive to sleep disturbance are unknown. We show that mild (4-6 h) sleep deprivation (SD) selectively augmented the number of NR2A subunits of NMDA receptors on postsynaptic densities of adult mouse CA1 synapses. The greater synaptic NR2A content facilitated induction of CA3-CA1 long-term depression in the theta frequency stimulation range and augmented the synaptic modification threshold. NR2A-knock-out mice maintained behavioral response to SD, including compensatory increase in post-deprivation resting time, but hippocampal synaptic plasticity was insensitive to sleep loss. After SD, the balance between synaptically activated and slowly recruited NMDA receptor pools during temporal summation was disrupted. Together, these results indicate that NR2A is obligatory for the consequences of sleep loss on hippocampal synaptic plasticity. These findings could advance pharmacological strategies aiming to sustain hippocampal function during sleep restriction.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The role of GABA(B) receptors in sleep is still poorly understood. GHB (γ-hydroxybutyric acid) targets these receptors and is the only drug approved to treat the sleep disorder narcolepsy. GABA(B) receptors are obligate dimers comprised of the GABA(B2) subunit and either one of the two GABA(B1) subunit isoforms, GABA(B1a) and GABA(B1b). To better understand the role of GABA(B) receptors in sleep regulation, we performed electroencephalogram (EEG) recordings in mice devoid of functional GABA(B) receptors (1(-/-) and 2(-/-)) or lacking one of the subunit 1 isoforms (1a(-/-) and 1b(-/-)). The distribution of sleep over the day was profoundly altered in 1(-/-) and 2(-/-) mice, suggesting a role for GABA(B) receptors in the circadian organization of sleep. Several other sleep and EEG phenotypes pointed to a more prominent role for GABA(B1a) compared with the GABA(B1b) isoform. Moreover, we found that GABA(B1a) protects against the spontaneous seizure activity observed in 1(-/-) and 2(-/-) mice. We also evaluated the effects of the GHB-prodrug GBL (γ-butyrolactone) and of baclofen (BAC), a high-affinity GABA(B) receptor agonist. Both drugs induced a state distinct from physiological sleep that was not observed in 1(-/-) and 2(-/-) mice. Subsequent sleep was not affected by GBL whereas BAC was followed by a delayed hypersomnia even in 1(-/-) and 2(-/-) mice. The differential effects of GBL and BAC might be attributed to differences in GABA(B)-receptor affinity. These results also indicate that all GBL effects are mediated through GABA(B) receptors, although these receptors do not seem to be involved in mediating the BAC-induced hypersomnia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent multisensory research has emphasized the occurrence of early, low-level interactions in humans. As such, it is proving increasingly necessary to also consider the kinds of information likely extracted from the unisensory signals that are available at the time and location of these interaction effects. This review addresses current evidence regarding how the spatio-temporal brain dynamics of auditory information processing likely curtails the information content of multisensory interactions observable in humans at a given latency and within a given brain region. First, we consider the time course of signal propagation as a limitation on when auditory information (of any kind) can impact the responsiveness of a given brain region. Next, we overview the dual pathway model for the treatment of auditory spatial and object information ranging from rudimentary to complex environmental stimuli. These dual pathways are considered an intrinsic feature of auditory information processing, which are not only partially distinct in their associated brain networks, but also (and perhaps more importantly) manifest only after several tens of milliseconds of cortical signal processing. This architecture of auditory functioning would thus pose a constraint on when and in which brain regions specific spatial and object information are available for multisensory interactions. We then separately consider evidence regarding mechanisms and dynamics of spatial and object processing with a particular emphasis on when discriminations along either dimension are likely performed by specific brain regions. We conclude by discussing open issues and directions for future research.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Neuronal oscillations have been the focus of increasing interest in the neuroscientific community, in part because they have been considered as a possible integrating mechanism through which internal states can influence stimulus processing in a top-down way (Engel et al., 2001). Moreover, increasing evidence indicates that oscillations in different frequency bands interact with one other through coupling mechanisms (Jensen and Colgin, 2007). The existence and the importance of these cross-frequency couplings during various tasks have been verified by recent studies (Canolty et al., 2006; Lakatos et al., 2007). In this study, we measure the strength and directionality of two types of couplings - phase-amplitude couplings and phase-phase couplings - between various bands in EEG data recorded during an illusory contour experiment that were identified using a recently-proposed adaptive frequency tracking algorithm (Van Zaen et al., 2010). Methods: The data used in this study have been taken from a previously published study examining the spatiotemporal mechanisms of illusory contour processing (Murray et al., 2002). The EEG in the present study were from a subset of nine subjects. Each stimulus was composed of 'pac-man' inducers presented in two orientations: IC, when an illusory contour was present, and NC, when no contour could be detected. The signals recorded by the electrodes P2, P4, P6, PO4 and PO6 were averaged, and filtered into the following bands: 4-8Hz, 8-12Hz, 15-25Hz, 35-45Hz, 45-55Hz, 55-65Hz and 65-75Hz. An adaptive frequency tracking algorithm (Van Zaen et al., 2010) was then applied in each band in order to extract the main oscillation and estimate its frequency. This additional step ensures that clean phase information is obtained when taking the Hilbert transform. The frequency estimated by the tracker was averaged over sliding windows and then used to compare the two conditions. Two types of cross-frequency couplings were considered: phase-amplitude couplings and phase-phase couplings. Both types were measured with the phase locking value (PLV, Lachaux et al., 1999) over sliding windows. The phase-amplitude couplings were computed with the phase of the low frequency oscillation and the phase of the amplitude of the high frequency one. Different coupling coefficients were used when measuring phase-phase couplings in order to estimate different m:n synchronizations (4:3, 3:2, 2:1, 3:1, 4:1, 5:1, 6:1, 7:1, 8:1 and 9:1) and to take into account the frequency differences across bands. Moreover, the direction of coupling was estimated with a directionality index (Bahraminasab et al., 2008). Finally, the two conditions IC and NC were compared with ANOVAs with 'subject' as a random effect and 'condition' as a fixed effect. Before computing the statistical tests, the PLV values were transformed into approximately normal variables (Penny et al., 2008). Results: When comparing the mean estimated frequency across conditions, a significant difference was found only in the 4-8Hz band, such that the frequency within this band was significantly higher for IC than NC stimuli starting at ~250ms post-stimulus onset (Fig. 1; solid line shows IC and dashed line NC). Significant differences in phase-amplitude couplings were obtained only when the 4-8 Hz band was taken as the low frequency band. Moreover, in all significant situations, the coupling strength is higher for the NC than IC condition. An example of significant difference between conditions is shown in Fig. 2 for the phase-amplitude coupling between the 4-8Hz and 55-65Hz bands (p-value in top panel and mean PLV values in the bottom panel). A decrease in coupling strength was observed shortly after stimulus onset for both conditions and was greater for the condition IC. This phenomenon was observed with all other frequency bands. The results obtained for the phase-phase couplings were more complex. As for the phase-amplitude couplings, all significant differences were obtained when the 4-8Hz band was considered as the low frequency band. The stimulus condition exhibiting the higher coupling strength depended on the ratio of the coupling coefficients. When this ratio was small, the IC condition exhibited the higher phase-phase coupling strength. When this ratio was large, the NC condition exhibited the higher coupling strength. Fig. 3 shows the phase-phase couplings between the 4-8Hz and 35-45Hz bands for the coupling coefficient 6:1, and the coupling strength was significantly higher for the IC than NC condition. By contrast, for the coupling coefficient 9:1 the NC condition gave the higher coupling strength (Fig. 4). Control analyses verified that it is not a consequence of the frequency difference between the two conditions in the 4-8Hz band. The directionality measures indicated a transfer of information from the low frequency components towards the high frequency ones. Conclusions: Adaptive tracking is a feasible method for EEG analyses, revealing information both about stimulus-related differences and coupling patterns across frequencies. Theta oscillations play a central role in illusory shape processing and more generally in visual processing. The presence vs. absence of illusory shapes was paralleled by faster theta oscillations. Phase-amplitude couplings were decreased more for IC than NC and might be due to a resetting mechanism. The complex patterns in phase-phase coupling between theta and beta/gamma suggest that the contribution of these oscillations to visual binding and stimulus processing are not as straightforward as conventionally held. Causality analyses further suggest that theta oscillations drive beta/gamma oscillations (see also Schroeder and Lakatos, 2009). The present findings highlight the need for applying more sophisticated signal analyses in order to establish a fuller understanding of the functional role of neural oscillations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Maintaining wakefulness is associated with a progressive increase in the need for sleep. This phenomenon has been linked to changes in synaptic function. The synaptic adhesion molecule Neuroligin-1 (NLG1) controls the activity and synaptic localization of N-methyl-d-aspartate receptors, which activity is impaired by prolonged wakefulness. We here highlight that this pathway may underlie both the adverse effects of sleep loss on cognition and the subsequent changes in cortical synchrony. We found that the expression of specific Nlg1 transcript variants is changed by sleep deprivation in three mouse strains. These observations were associated with strain-specific changes in synaptic NLG1 protein content. Importantly, we showed that Nlg1 knockout mice are not able to sustain wakefulness and spend more time in nonrapid eye movement sleep than wild-type mice. These changes occurred with modifications in waking quality as exemplified by low theta/alpha activity during wakefulness and poor preference for social novelty, as well as altered delta synchrony during sleep. Finally, we identified a transcriptional pathway that could underlie the sleep/wake-dependent changes in Nlg1 expression and that involves clock transcription factors. We thus suggest that NLG1 is an element that contributes to the coupling of neuronal activity to sleep/wake regulation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Subjects with autism often show language difficulties, but it is unclear how they relate to neurophysiological anomalies of cortical speech processing. We used combined EEG and fMRI in 13 subjects with autism and 13 control participants and show that in autism, gamma and theta cortical activity do not engage synergistically in response to speech. Theta activity in left auditory cortex fails to track speech modulations, and to down-regulate gamma oscillations in the group with autism. This deficit predicts the severity of both verbal impairment and autism symptoms in the affected sample. Finally, we found that oscillation-based connectivity between auditory and other language cortices is altered in autism. These results suggest that the verbal disorder in autism could be associated with an altered balance of slow and fast auditory oscillations, and that this anomaly could compromise the mapping between sensory input and higher-level cognitive representations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Single-nucleotide polymorphisms (SNPs) in immune genes have been associated with susceptibility to invasive mold infection (IMI) among hematopoietic stem cell but not solid-organ transplant (SOT) recipients. METHODS: Twenty-four SNPs from systematically selected genes were genotyped among 1101 SOT recipients (715 kidney transplant recipients, 190 liver transplant recipients, 102 lung transplant recipients, 79 heart transplant recipients, and 15 recipients of other transplants) from the Swiss Transplant Cohort Study. Association between SNPs and the end point were assessed by log-rank test and Cox regression models. Cytokine production upon Aspergillus stimulation was measured by enzyme-linked immunosorbent assay in peripheral blood mononuclear cells (PBMCs) from healthy volunteers and correlated with relevant genotypes. RESULTS: Mold colonization (n = 45) and proven/probable IMI (n = 26) were associated with polymorphisms in the genes encoding interleukin 1β (IL1B; rs16944; recessive mode, P = .001 for colonization and P = .00005 for IMI, by the log-rank test), interleukin 1 receptor antagonist (IL1RN; rs419598; P = .01 and P = .02, respectively), and β-defensin 1 (DEFB1; rs1800972; P = .001 and P = .0002, respectively). The associations with IL1B and DEFB1 remained significant in a multivariate regression model (P = .002 for IL1B rs16944; P = .01 for DEFB1 rs1800972). The presence of 2 copies of the rare allele of rs16944 or rs419598 was associated with reduced Aspergillus-induced interleukin 1β and tumor necrosis factor α secretion by PBMCs. CONCLUSIONS: Functional polymorphisms in IL1B and DEFB1 influence susceptibility to mold infection in SOT recipients. This observation may contribute to individual risk stratification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVE: Although sleep is a biomarker for general health and pathological conditions, its changes across age and gender are poorly understood. METHODS: Subjective evaluation of sleep was assessed by questionnaires in 5,064 subjects, and 2,966 were considered without sleep disorders. Objective evaluation was performed by polysomnography in 2,160 subjects, and 1,147 were considered without sleep disorders. Only subjects without sleep disorders were included (aged 40-80 years). RESULTS: Aging was strongly associated with morning preference. Older subjects, especially women, complained less about sleepiness, and pathological sleepiness was significantly lower than in younger subjects. Self-reported sleep quality and daytime functioning improved with aging. Sleep latency increased with age in women, while sleep efficiency decreased with age in both genders. Deep slow-wave sleep decreased with age, but men were more affected. Spectral power densities within slow waves (< 5 Hz) and fast spindles (14-14.75 Hz) decreased, while theta-alpha (5-1 Hz) and beta (16.75-25 Hz) power in non-rapid eye movement sleep increased with aging. In REM sleep, aging was associated with a progressive decrease in delta (1.25-4.5 Hz) and increase in higher frequencies. CONCLUSIONS: Our findings indicate that sleep complaints should not be viewed as part of normal aging but should prompt the identification of underlying causes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

UNLABELLED: We compared the HIV-1-specific cellular and humoral immune responses elicited in rhesus macaques immunized with two poxvirus vectors (NYVAC and ALVAC) expressing the same HIV-1 antigens from clade C, Env gp140 as a trimeric cell-released protein and a Gag-Pol-Nef polyprotein as Gag-induced virus-like particles (VLPs) (referred to as NYVAC-C and ALVAC-C). The immunization protocol consisted of two doses of the corresponding poxvirus vector plus two doses of a combination of the poxvirus vector and a purified HIV-1 gp120 protein from clade C. This immunogenicity profile was also compared to that elicited by vaccine regimens consisting of two doses of the ALVAC vector expressing HIV-1 antigens from clades B/E (ALVAC-vCP1521) plus two doses of a combination of ALVAC-vCP1521 and HIV-1 gp120 protein from clades B/E (similar to the RV144 trial regimen) or clade C. The results showed that immunization of macaques with NYVAC-C stimulated at different times more potent HIV-1-specific CD4(+) T-cell responses and induced a trend toward higher-magnitude HIV-1-specific CD8(+) T-cell immune responses than did ALVAC-C. Furthermore, NYVAC-C induced a trend toward higher levels of binding IgG antibodies against clade C HIV-1 gp140, gp120, or murine leukemia virus (MuLV) gp70-scaffolded V1/V2 and toward best cross-clade-binding IgG responses against HIV-1 gp140 from clades A, B, and group M consensus, than did ALVAC-C. Of the linear binding IgG responses, most were directed against the V3 loop in all immunization groups. Additionally, NYVAC-C and ALVAC-C also induced similar levels of HIV-1-neutralizing antibodies and antibody-dependent cellular cytotoxicity (ADCC) responses. Interestingly, binding IgA antibody levels against HIV-1 gp120 or MuLV gp70-scaffolded V1/V2 were absent or very low in all immunization groups. Overall, these results provide a comprehensive survey of the immunogenicity of NYVAC versus ALVAC expressing HIV-1 antigens in nonhuman primates and indicate that NYVAC may represent an alternative candidate to ALVAC in the development of a future HIV-1 vaccine. IMPORTANCE: The finding of a safe and effective HIV/AIDS vaccine immunogen is one of the main research priorities. Here, we generated two poxvirus-based HIV vaccine candidates (NYVAC and ALVAC vectors) expressing the same clade C HIV-1 antigens in separate vectors, and we analyzed in nonhuman primates their immunogenicity profiles. The results showed that immunization with NYVAC-C induced a trend toward higher HIV-1-specific cellular and humoral immune responses than did ALVAC-C, indicating that this new NYVAC vector could be a novel optimized HIV/AIDS vaccine candidate for human clinical trials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

STUDY OBJECTIVES: The nuclear receptor REV-ERBα is a potent, constitutive transcriptional repressor critical for the regulation of key circadian and metabolic genes. Recently, REV-ERBα's involvement in learning, neurogenesis, mood, and dopamine turnover was demonstrated suggesting a specific role in central nervous system functioning. We have previously shown that the brain expression of several core clock genes, including Rev-erbα, is modulated by sleep loss. We here test the consequences of a loss of REV-ERBα on the homeostatic regulation of sleep. METHODS: EEG/EMG signals were recorded in Rev-erbα knockout (KO) mice and their wild type (WT) littermates during baseline, sleep deprivation, and recovery. Cortical gene expression measurements after sleep deprivation were contrasted to baseline. RESULTS: Although baseline sleep/wake duration was remarkably similar, KO mice showed an advance of the sleep/wake distribution relative to the light-dark cycle. After sleep onset in baseline and after sleep deprivation, both EEG delta power (1-4 Hz) and sleep consolidation were reduced in KO mice indicating a slower increase of homeostatic sleep need during wakefulness. This slower increase might relate to the smaller increase in theta and gamma power observed in the waking EEG prior to sleep onset under both conditions. Indeed, the increased theta activity during wakefulness predicted delta power in subsequent NREM sleep. Lack of Rev-erbα increased Bmal1, Npas2, Clock, and Fabp7 expression, confirming the direct regulation of these genes by REV-ERBα also in the brain. CONCLUSIONS: Our results add further proof to the notion that clock genes are involved in sleep homeostasis. Because accumulating evidence directly links REV-ERBα to dopamine signaling the altered homeostatic regulation of sleep reported here are discussed in that context.