58 resultados para Remote sensing techniques


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We have explored the possibility of obtaining first-order permeability estimates for saturated alluvial sediments based on the poro-elastic interpretation of the P-wave velocity dispersion inferred from sonic logs. Modern sonic logging tools designed for environmental and engineering applications allow one for P-wave velocity measurements at multiple emitter frequencies over a bandwidth covering 5 to 10 octaves. Methodological considerations indicate that, for saturated unconsolidated sediments in the silt to sand range and typical emitter frequencies ranging from approximately 1 to 30 kHz, the observable velocity dispersion should be sufficiently pronounced to allow one for reliable first-order estimations of the permeability structure. The corresponding predictions have been tested on and verified for a borehole penetrating a typical surficial alluvial aquifer. In addition to multifrequency sonic logs, a comprehensive suite of nuclear and electrical logs, an S-wave log, a litholog, and a limited number laboratory measurements of the permeability from retrieved core material were also available. This complementary information was found to be essential for parameterizing the poro-elastic inversion procedure and for assessing the uncertainty and internal consistency of corresponding permeability estimates. Our results indicate that the thus obtained permeability estimates are largely consistent with those expected based on the corresponding granulometric characteristics, as well as with the available evidence form laboratory measurements. These findings are also consistent with evidence from ocean acoustics, which indicate that, over a frequency range of several orders-of-magnitude, the classical theory of poro-elasticity is generally capable of explaining the observed P-wave velocity dispersion in medium- to fine-grained seabed sediments

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recent advances in remote sensing technologies have facilitated the generation of very high resolution (VHR) environmental data. Exploratory studies suggested that, if used in species distribution models (SDMs), these data should enable modelling species' micro-habitats and allow improving predictions for fine-scale biodiversity management. In the present study, we tested the influence, in SDMs, of predictors derived from a VHR digital elevation model (DEM) by comparing the predictive power of models for 239 plant species and their assemblages fitted at six different resolutions in the Swiss Alps. We also tested whether changes of the model quality for a species is related to its functional and ecological characteristics. Refining the resolution only contributed to slight improvement of the models for more than half of the examined species, with the best results obtained at 5 m, but no significant improvement was observed, on average, across all species. Contrary to our expectations, we could not consistently correlate the changes in model performance with species characteristics such as vegetation height. Temperature, the most important variable in the SDMs across the different resolutions, did not contribute any substantial improvement. Our results suggest that improving resolution of topographic data only is not sufficient to improve SDM predictions - and therefore local management - compared to previously used resolutions (here 25 and 100 m). More effort should be dedicated now to conduct finer-scale in-situ environmental measurements (e.g. for temperature, moisture, snow) to obtain improved environmental measurements for fine-scale species mapping and management.

Relevância:

80.00% 80.00%

Publicador:

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this study we propose an evaluation of the angular effects altering the spectral response of the land-cover over multi-angle remote sensing image acquisitions. The shift in the statistical distribution of the pixels observed in an in-track sequence of WorldView-2 images is analyzed by means of a kernel-based measure of distance between probability distributions. Afterwards, the portability of supervised classifiers across the sequence is investigated by looking at the evolution of the classification accuracy with respect to the changing observation angle. In this context, the efficiency of various physically and statistically based preprocessing methods in obtaining angle-invariant data spaces is compared and possible synergies are discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Continuous field mapping has to address two conflicting remote sensing requirements when collecting training data. On one hand, continuous field mapping trains fractional land cover and thus favours mixed training pixels. On the other hand, the spectral signature has to be preferably distinct and thus favours pure training pixels. The aim of this study was to evaluate the sensitivity of training data distribution along fractional and spectral gradients on the resulting mapping performance. We derived four continuous fields (tree, shrubherb, bare, water) from aerial photographs as response variables and processed corresponding spectral signatures from multitemporal Landsat 5 TM data as explanatory variables. Subsequent controlled experiments along fractional cover gradients were then based on generalised linear models. Resulting fractional and spectral distribution differed between single continuous fields, but could be satisfactorily trained and mapped. Pixels with fractional or without respective cover were much more critical than pure full cover pixels. Error distribution of continuous field models was non-uniform with respect to horizontal and vertical spatial distribution of target fields. We conclude that a sampling for continuous field training data should be based on extent and densities in the fractional and spectral, rather than the real spatial space. Consequently, adequate training plots are most probably not systematically distributed in the real spatial space, but cover the gradient and covariate structure of the fractional and spectral space well. (C) 2009 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS). Published by Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Due to the advances in sensor networks and remote sensing technologies, the acquisition and storage rates of meteorological and climatological data increases every day and ask for novel and efficient processing algorithms. A fundamental problem of data analysis and modeling is the spatial prediction of meteorological variables in complex orography, which serves among others to extended climatological analyses, for the assimilation of data into numerical weather prediction models, for preparing inputs to hydrological models and for real time monitoring and short-term forecasting of weather.In this thesis, a new framework for spatial estimation is proposed by taking advantage of a class of algorithms emerging from the statistical learning theory. Nonparametric kernel-based methods for nonlinear data classification, regression and target detection, known as support vector machines (SVM), are adapted for mapping of meteorological variables in complex orography.With the advent of high resolution digital elevation models, the field of spatial prediction met new horizons. In fact, by exploiting image processing tools along with physical heuristics, an incredible number of terrain features which account for the topographic conditions at multiple spatial scales can be extracted. Such features are highly relevant for the mapping of meteorological variables because they control a considerable part of the spatial variability of meteorological fields in the complex Alpine orography. For instance, patterns of orographic rainfall, wind speed and cold air pools are known to be correlated with particular terrain forms, e.g. convex/concave surfaces and upwind sides of mountain slopes.Kernel-based methods are employed to learn the nonlinear statistical dependence which links the multidimensional space of geographical and topographic explanatory variables to the variable of interest, that is the wind speed as measured at the weather stations or the occurrence of orographic rainfall patterns as extracted from sequences of radar images. Compared to low dimensional models integrating only the geographical coordinates, the proposed framework opens a way to regionalize meteorological variables which are multidimensional in nature and rarely show spatial auto-correlation in the original space making the use of classical geostatistics tangled.The challenges which are explored during the thesis are manifolds. First, the complexity of models is optimized to impose appropriate smoothness properties and reduce the impact of noisy measurements. Secondly, a multiple kernel extension of SVM is considered to select the multiscale features which explain most of the spatial variability of wind speed. Then, SVM target detection methods are implemented to describe the orographic conditions which cause persistent and stationary rainfall patterns. Finally, the optimal splitting of the data is studied to estimate realistic performances and confidence intervals characterizing the uncertainty of predictions.The resulting maps of average wind speeds find applications within renewable resources assessment and opens a route to decrease the temporal scale of analysis to meet hydrological requirements. Furthermore, the maps depicting the susceptibility to orographic rainfall enhancement can be used to improve current radar-based quantitative precipitation estimation and forecasting systems and to generate stochastic ensembles of precipitation fields conditioned upon the orography.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We investigate the relevance of morphological operators for the classification of land use in urban scenes using submetric panchromatic imagery. A support vector machine is used for the classification. Six types of filters have been employed: opening and closing, opening and closing by reconstruction, and opening and closing top hat. The type and scale of the filters are discussed, and a feature selection algorithm called recursive feature elimination is applied to decrease the dimensionality of the input data. The analysis performed on two QuickBird panchromatic images showed that simple opening and closing operators are the most relevant for classification at such a high spatial resolution. Moreover, mixed sets combining simple and reconstruction filters provided the best performance. Tests performed on both images, having areas characterized by different architectural styles, yielded similar results for both feature selection and classification accuracy, suggesting the generalization of the feature sets highlighted.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This letter presents advanced classification methods for very high resolution images. Efficient multisource information, both spectral and spatial, is exploited through the use of composite kernels in support vector machines. Weighted summations of kernels accounting for separate sources of spectral and spatial information are analyzed and compared to classical approaches such as pure spectral classification or stacked approaches using all the features in a single vector. Model selection problems are addressed, as well as the importance of the different kernels in the weighted summation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Les catastrophes sont souvent perçues comme des événements rapides et aléatoires. Si les déclencheurs peuvent être soudains, les catastrophes, elles, sont le résultat d'une accumulation des conséquences d'actions et de décisions inappropriées ainsi que du changement global. Pour modifier cette perception du risque, des outils de sensibilisation sont nécessaires. Des méthodes quantitatives ont été développées et ont permis d'identifier la distribution et les facteurs sous- jacents du risque.¦Le risque de catastrophes résulte de l'intersection entre aléas, exposition et vulnérabilité. La fréquence et l'intensité des aléas peuvent être influencées par le changement climatique ou le déclin des écosystèmes, la croissance démographique augmente l'exposition, alors que l'évolution du niveau de développement affecte la vulnérabilité. Chacune de ses composantes pouvant changer, le risque est dynamique et doit être réévalué périodiquement par les gouvernements, les assurances ou les agences de développement. Au niveau global, ces analyses sont souvent effectuées à l'aide de base de données sur les pertes enregistrées. Nos résultats montrent que celles-ci sont susceptibles d'être biaisées notamment par l'amélioration de l'accès à l'information. Elles ne sont pas exhaustives et ne donnent pas d'information sur l'exposition, l'intensité ou la vulnérabilité. Une nouvelle approche, indépendante des pertes reportées, est donc nécessaire.¦Les recherches présentées ici ont été mandatées par les Nations Unies et par des agences oeuvrant dans le développement et l'environnement (PNUD, l'UNISDR, la GTZ, le PNUE ou l'UICN). Ces organismes avaient besoin d'une évaluation quantitative sur les facteurs sous-jacents du risque, afin de sensibiliser les décideurs et pour la priorisation des projets de réduction des risques de désastres.¦La méthode est basée sur les systèmes d'information géographique, la télédétection, les bases de données et l'analyse statistique. Une importante quantité de données (1,7 Tb) et plusieurs milliers d'heures de calculs ont été nécessaires. Un modèle de risque global a été élaboré pour révéler la distribution des aléas, de l'exposition et des risques, ainsi que pour l'identification des facteurs de risque sous- jacent de plusieurs aléas (inondations, cyclones tropicaux, séismes et glissements de terrain). Deux indexes de risque multiples ont été générés pour comparer les pays. Les résultats incluent une évaluation du rôle de l'intensité de l'aléa, de l'exposition, de la pauvreté, de la gouvernance dans la configuration et les tendances du risque. Il apparaît que les facteurs de vulnérabilité changent en fonction du type d'aléa, et contrairement à l'exposition, leur poids décroît quand l'intensité augmente.¦Au niveau local, la méthode a été testée pour mettre en évidence l'influence du changement climatique et du déclin des écosystèmes sur l'aléa. Dans le nord du Pakistan, la déforestation induit une augmentation de la susceptibilité des glissements de terrain. Les recherches menées au Pérou (à base d'imagerie satellitaire et de collecte de données au sol) révèlent un retrait glaciaire rapide et donnent une évaluation du volume de glace restante ainsi que des scénarios sur l'évolution possible.¦Ces résultats ont été présentés à des publics différents, notamment en face de 160 gouvernements. Les résultats et les données générées sont accessibles en ligne (http://preview.grid.unep.ch). La méthode est flexible et facilement transposable à des échelles et problématiques différentes, offrant de bonnes perspectives pour l'adaptation à d'autres domaines de recherche.¦La caractérisation du risque au niveau global et l'identification du rôle des écosystèmes dans le risque de catastrophe est en plein développement. Ces recherches ont révélés de nombreux défis, certains ont été résolus, d'autres sont restés des limitations. Cependant, il apparaît clairement que le niveau de développement configure line grande partie des risques de catastrophes. La dynamique du risque est gouvernée principalement par le changement global.¦Disasters are often perceived as fast and random events. If the triggers may be sudden, disasters are the result of an accumulation of actions, consequences from inappropriate decisions and from global change. To modify this perception of risk, advocacy tools are needed. Quantitative methods have been developed to identify the distribution and the underlying factors of risk.¦Disaster risk is resulting from the intersection of hazards, exposure and vulnerability. The frequency and intensity of hazards can be influenced by climate change or by the decline of ecosystems. Population growth increases the exposure, while changes in the level of development affect the vulnerability. Given that each of its components may change, the risk is dynamic and should be reviewed periodically by governments, insurance companies or development agencies. At the global level, these analyses are often performed using databases on reported losses. Our results show that these are likely to be biased in particular by improvements in access to information. International losses databases are not exhaustive and do not give information on exposure, the intensity or vulnerability. A new approach, independent of reported losses, is necessary.¦The researches presented here have been mandated by the United Nations and agencies working in the development and the environment (UNDP, UNISDR, GTZ, UNEP and IUCN). These organizations needed a quantitative assessment of the underlying factors of risk, to raise awareness amongst policymakers and to prioritize disaster risk reduction projects.¦The method is based on geographic information systems, remote sensing, databases and statistical analysis. It required a large amount of data (1.7 Tb of data on both the physical environment and socio-economic parameters) and several thousand hours of processing were necessary. A comprehensive risk model was developed to reveal the distribution of hazards, exposure and risk, and to identify underlying risk factors. These were performed for several hazards (e.g. floods, tropical cyclones, earthquakes and landslides). Two different multiple risk indexes were generated to compare countries. The results include an evaluation of the role of the intensity of the hazard, exposure, poverty, governance in the pattern and trends of risk. It appears that the vulnerability factors change depending on the type of hazard, and contrary to the exposure, their weight decreases as the intensity increases.¦Locally, the method was tested to highlight the influence of climate change and the ecosystems decline on the hazard. In northern Pakistan, deforestation exacerbates the susceptibility of landslides. Researches in Peru (based on satellite imagery and ground data collection) revealed a rapid glacier retreat and give an assessment of the remaining ice volume as well as scenarios of possible evolution.¦These results were presented to different audiences, including in front of 160 governments. The results and data generated are made available online through an open source SDI (http://preview.grid.unep.ch). The method is flexible and easily transferable to different scales and issues, with good prospects for adaptation to other research areas. The risk characterization at a global level and identifying the role of ecosystems in disaster risk is booming. These researches have revealed many challenges, some were resolved, while others remained limitations. However, it is clear that the level of development, and more over, unsustainable development, configures a large part of disaster risk and that the dynamics of risk is primarily governed by global change.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, mixed spectral-structural kernel machines are proposed for the classification of very-high resolution images. The simultaneous use of multispectral and structural features (computed using morphological filters) allows a significant increase in classification accuracy of remote sensing images. Subsequently, weighted summation kernel support vector machines are proposed and applied in order to take into account the multiscale nature of the scene considered. Such classifiers use the Mercer property of kernel matrices to compute a new kernel matrix accounting simultaneously for two scale parameters. Tests on a Zurich QuickBird image show the relevance of the proposed method : using the mixed spectral-structural features, the classification accuracy increases of about 5%, achieving a Kappa index of 0.97. The multikernel approach proposed provide an overall accuracy of 98.90% with related Kappa index of 0.985.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper, we consider active sampling to label pixels grouped with hierarchical clustering. The objective of the method is to match the data relationships discovered by the clustering algorithm with the user's desired class semantics. The first is represented as a complete tree to be pruned and the second is iteratively provided by the user. The active learning algorithm proposed searches the pruning of the tree that best matches the labels of the sampled points. By choosing the part of the tree to sample from according to current pruning's uncertainty, sampling is focused on most uncertain clusters. This way, large clusters for which the class membership is already fixed are no longer queried and sampling is focused on division of clusters showing mixed labels. The model is tested on a VHR image in a multiclass classification setting. The method clearly outperforms random sampling in a transductive setting, but cannot generalize to unseen data, since it aims at optimizing the classification of a given cluster structure.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study shows how a new generation of terrestrial laser scanners can be used to investigate glacier surface ablation and other elements of glacial hydrodynamics at exceptionally high spatial and temporal resolution. The study area is an Alpine valley glacier, Haut Glacier d'Arolla, Switzerland. Here we use an ultra-long-range lidar RIEGL VZ-6000 scanner, having a laser specifically designed for measurement of snow- and ice-cover surfaces. We focus on two timescales: seasonal and daily. Our results show that a near-infrared scanning laser system can provide high-precision elevation change and ablation data from long ranges, and over relatively large sections of the glacier surface. We use it to quantify spatial variations in the patterns of surface melt at the seasonal scale, as controlled by both aspect and differential debris cover. At the daily scale, we quantify the effects of ogive-related differences in ice surface debris content on spatial patterns of ablation. Daily scale measurements point to possible hydraulic jacking of the glacier associated with short-term water pressure rises. This latter demonstration shows that this type of lidar may be used to address subglacial hydrologic questions, in addition to motion and ablation measurements.