188 resultados para Release rates
Resumo:
Natural variation in DNA sequence contributes to individual differences in quantitative traits. While multiple studies have shown genetic control over gene expression variation, few additional cellular traits have been investigated. Here, we investigated the natural variation of NADPH oxidase-dependent hydrogen peroxide (H(2)O(2) release), which is the joint effect of reactive oxygen species (ROS) production, superoxide metabolism and degradation, and is related to a number of human disorders. We assessed the normal variation of H(2)O(2) release in lymphoblastoid cell lines (LCL) in a family-based 3-generation cohort (CEPH-HapMap), and in 3 population-based cohorts (KORA, GenCord, HapMap). Substantial individual variation was observed, 45% of which were associated with heritability in the CEPH-HapMap cohort. We identified 2 genome-wide significant loci of Hsa12 and Hsa15 in genome-wide linkage analysis. Next, we performed genome-wide association study (GWAS) for the combined KORA-GenCord cohorts (n = 279) using enhanced marker resolution by imputation (>1.4 million SNPs). We found 5 significant associations (p<5.00×10-8) and 54 suggestive associations (p<1.00×10-5), one of which confirmed the linked region on Hsa15. To replicate our findings, we performed GWAS using 58 HapMap individuals and ∼2.1 million SNPs. We identified 40 genome-wide significant and 302 suggestive SNPs, and confirmed genome signals on Hsa1, Hsa12, and Hsa15. Genetic loci within 900 kb from the known candidate gene p67phox on Hsa1 were identified in GWAS in both cohorts. We did not find replication of SNPs across all cohorts, but replication within the same genomic region. Finally, a highly significant decrease in H(2)O(2) release was observed in Down Syndrome (DS) individuals (p<2.88×10-12). Taken together, our results show strong evidence of genetic control of H(2)O(2) in LCL of healthy and DS cohorts and suggest that cellular phenotypes, which themselves are also complex, may be used as proxies for dissection of complex disorders.
Resumo:
PURPOSE: To retrospectively assess the influence of prophylactic cranial irradiation (PCI) timing on brain relapse rates in patients treated with two different chemoradiotherapy (CRT) regimens for Stage IIIB non-small-cell lung cancer (NSCLC). METHODS AND MATERIALS: A cohort of 134 patients, with Stage IIIB NSCLC in recursive partitioning analysis Group 1, was treated with PCI (30 Gy at 2 Gy/fr) following one of two CRT regimens. Regimen 1 (n = 58) consisted of three cycles of induction chemotherapy (ICT) followed by concurrent CRT (C-CRT). Regimen 2 (n = 76) consisted of immediate C-CRT during thoracic radiotherapy. RESULTS: At a median follow-up of 27.6 months (range, 7.2-40.4), 65 patients were alive. Median, progression-free, and brain metastasis-free survival (BMFS) times for the whole study cohort were 23.4, 15.4, and 23.0 months, respectively. Median survival time and the 3-year survival rate for regimens 1 and 2 were 19.3 vs. 26.1 months (p = 0.001) and 14.4% vs. 34.4% (p < .001), respectively. Median time from the initiation of primary treatment to PCI was 123.2 (range, 97-161) and 63.4 (range, 55-74) days for regimens 1 and 2, respectively (p < 0.001). Overall, 11 (8.2%) patients developed brain metastasis (BM) during the follow-up period: 8 (13.8%) in regimen 1 and 3 (3.9%) in regimen 2 (p = 0.03). Only 3 (2.2%) patients developed BM at the site of first failure, and for 2 of them, it was also the sole site of recurrence. Median BMFS for regimens 1 and 2 were 17.4 (13.5-21.3) vs. 26.0 (22.9-29.1 months), respectively (p < 0.001). CONCLUSION: These results suggest that in Stage IIIB NSCLC patients treated with PCI, lower BM incidence and longer survival rates result from immediate C-CRT rather than ITC-first regimens. This indicates the benefit of earlier PCI use without delay because of induction protocols.
Resumo:
Microglial cells react early to a neurotoxic insult. However, the bioactive factors and the cell-cell interactions leading to microglial activation and finally to a neuroprotective or neurodegenerative outcome remain to be elucidated. Therefore, we analyzed the microglial reaction induced by methylmercury (MeHgCl) using cell cultures of different complexity. Isolated microglia were found to be directly activated by MeHgCl (10(-10) to 10(-6) M), as indicated by process retraction, enhanced lectin staining, and cluster formation. An association of MeHgCl-induced microglial clusters with astrocytes and neurons was observed in three-dimensional cultures. Close proximity was found between the clusters of lectin-stained microglia and astrocytes immunostained for glial fibrillary acidic protein (GFAP), which may facilitate interactions between astrocytes and reactive microglia. In contrast, immunoreactivity for microtubule-associated protein (MAP-2), a neuronal marker, was absent in the vicinity of the microglial clusters. Interactions between astrocytes and microglia were studied in cocultures treated for 10 days with MeHgCl. Interleukin-6 release was increased at 10(-7) M of MeHgCl, whereas it was decreased when each of these two cell types was cultured separately. Moreover, addition of IL-6 to three-dimensional brain cell cultures treated with 3 x 10(-7) M of MeHgCl prevented the decrease in immunostaining of the neuronal markers MAP-2 and neurofilament-M. IL-6 administered to three-dimensional cultures in the absence of MeHgCl caused astrogliosis, as indicated by increased GFAP immunoreactivity. Altogether, these results show that microglial cells are directly activated by MeHgCl and that the interaction between activated microglia and astrocytes can increase local IL-6 release, which may cause astrocyte reactivity and neuroprotection.
Resumo:
Abstract This work investigates the outcome of the interaction of the multiple causes of selection acting on dispersal in metapopulations. Dispersal, defined here as the ability of individuals to move out of their natal population to reproduce in an other one, has three main causes. First, population variability, as caused by random population extinctions, induces high incentives to disperse through the probability to recolonize an empty population and thus to escape competition for space. This adds to the second cause, kin competition avoidance where individuals in a crowded patch will benefit from the release of competition with relatives caused by dispersal. Dispersal may thus be viewed as an altruistic act. Third, dispersal might evolve as a strategy of avoiding inbred matings which are expected to bear fitness costs due to the presence of a mutation load. The interaction of inbreeding avoidance and kin competition is explored in chapter 2. Conditions conducive to the establishment of a high relatedness within population are expected to induce high dispersal through both kin competition avoidance and inbreeding avoidance. However, the dynamics of inbreeding depression is bound to depend on the level of gene flow as well as on the deleterious mutation parameters. Mutations more prone to settle a high level of inbreeding depression will select for increased dispersal. Chapter 3 investigates the effect of the mating system on the joint dynamics of dispersal and inbreeding depression. Higher inbreeding rates as those found in various mating systems lead to a more efficient purge of the deleterious mutations. However, this decrease in the costs of inbreeding are usually accompanied by a higher within deme relatedness which balances the decreased effect of inbreeding avoidance on the evolution of dispersal. Finally, population turnover, as found in most natural populations has a dual effect on dispersal. Indeed, it increases dispersal by the increased probability of winning a breeding slot in extinct demes it creates but, on the other hand, it counter-selects for dispersal through the slow establishment of unsaturated demic conditions which contribute to lower the local competition for space. Résumé Ce travail se propose d'étudier les effets conjoints des multiples causes de l'évolution de la dispersion en métapopulation. La dispersion, définie ici comme étant la capacité de quitter sa population d'origine pour se reproduire dans une antre population, possède trois principales causes. Premièrement, l'extinction aléatoire de populations sélectionne pour plus de dispersion car elle augmente la Probabilité de recoloniser un patch éteint et donc d'échapper à la compétition locale. La seconde cause, l'évitement de la compétition de parentèle, sélectionne pour plus de dispersion par les bénéfices qu'elle apporte par diminution de la compétition entre individus apparentés. Troisièmement, la dispersion évolue "comme stratégie d'évitement de la dépression de consanguinité présente dans des petites populations isolées. L'interaction entre l'évitement de la consanguinité et de la compétition de parentèle est étudiée dans le chapitre 2. Les conditions conduisant à l'établissement d'un fort apparentement à l'intérieur des populations sont celles qui génèrent le plus de sélection pour la dispersion. Cependant, la dynamique de la dépression de consanguinité est dépendante de la dispersion entre populations ainsi que des paramètres des mutations délétères. Les mutations créant le plus de dépression de consanguinité sont celles qui sélectionneront le plus pour de la dispersion. Le chapitre 3 s'intéresse aux effets du système de reproduction sur la dynamique conjointe du fardeau de mutation et de la dispersion. La purge des mutations délétère étant plus sévère dans des conditions de forte consanguinité, elle diminue les coûts de la consanguinité mais est habituellement accompagné par une augmentation de l'apparentement et donc l'effet peut être neutre sur la dispersion. Finalement, le turnover de populations a un effet dual sur la dispersion. La dispersion est sélectionnée par l'augmentation de la probabilité de gagner une place de reproduction dans des patchs éteints mais elle est également contre sélectionnée par la désaturation des patchs causée par l'extinction et la diminution de la compétition pour l'espace qui intervient dans ce cas.
Resumo:
OBJECTIVES: Human papillomavirus (HPV) is a sexually transmitted infection of particular interest because of its high prevalence rate and strong causal association with cervical cancer. Two prophylactic vaccines have been developed and different countries have made or will soon make recommendations for the vaccination of girls. Even if there is a consensus to recommend a vaccination before the beginning of sexual activity, there are, however, large discrepancies between countries concerning the perceived usefulness of a catch-up procedure and of boosters. The main objective of this article is to simulate the impact on different vaccination policies upon the mid- and long-term HPV 16/18 age-specific infection rates. METHODS: We developed an epidemiological model based on the susceptible-infective-recovered approach using Swiss data. The mid- and long-term impact of different vaccination scenarios was then compared. RESULTS: The generalization of a catch-up procedure is always beneficial, whatever its extent. Moreover, pending on the length of the protection offered by the vaccine, boosters will also be very useful. CONCLUSIONS: To be really effective, a vaccination campaign against HPV infection should at least include a catch-up to early reach a drop in HPV 16/18 prevalence, and maybe boosters. Otherwise, the protection insured for women in their 20s could be lower than expected, resulting in higher risks to later develop cervical cancer.
Resumo:
BACKGROUND AND PURPOSE: There is high interindividual variability in the activity of drug-metabolizing enzymes catalysing the oxidation of oxycodone [cytochrome P450 (CYP) 2D6 and 3A], due to genetic polymorphisms and/or drug-drug interactions. The effects of CYP2D6 and/or CYP3A activity modulation on the pharmacokinetics of oxycodone remains poorly explored. EXPERIMENTAL APPROACH: A randomized crossover double-blind placebo-controlled study was performed with 10 healthy volunteers genotyped for CYP2D6 [six extensive (EM), two deficient (PM/IM) and two ultrarapid metabolizers (UM)]. The volunteers randomly received on five different occasions: oxycodone 0.2 mg x kg(-1) and placebo; oxycodone and quinidine (CYP2D6 inhibitor); oxycodone and ketoconazole (CYP3A inhibitor); oxycodone and quinidine+ketoconazole; placebo. Blood samples for plasma concentrations of oxycodone and metabolites (oxymorphone, noroxycodone and noroxymorphone) were collected for 24 h after dosing. Phenotyping for CYP2D6 (with dextromethorphan) and CYP3A (with midazolam) were assessed at each session. KEY RESULTS: CYP2D6 activity was correlated with oxymorphone and noroxymorphone AUCs and C(max) (-0.71 < Spearman correlation coefficient rhos < -0.92). Oxymorphone C(max) was 62% and 75% lower in PM than EM and UM. Noroxymorphone C(max) reduction was even more pronounced (90%). In UM, oxymorphone and noroxymorphone concentrations increased whereas noroxycodone exposure was halved. Blocking CYP2D6 (with quinidine) reduced oxymorphone and noroxymorphone C(max) by 40% and 80%, and increased noroxycodone AUC(infinity) by 70%. Blocking CYP3A4 (with ketoconazole) tripled oxymorphone AUC(infinity) and reduced noroxycodone and noroxymorphone AUCs by 80%. Shunting to CYP2D6 pathway was observed after CYP3A4 inhibition. CONCLUSIONS AND IMPLICATIONS: Drug-drug interactions via CYP2D6 and CYP3A affected oxycodone pharmacokinetics and its magnitude depended on CYP2D6 genotype.
Resumo:
Coronary heart disease is a leading cause of death for both sexes in developed countries. Controversy has arisen about the health benefits and risks of coronary surgery and, more recently of coronary angioplasty. As a clinical prerequisite to these interventions, coronary arteriography can be considered an indicator of invasive services offered to coronary heart disease patients. We collected data on characteristics of all patients subjected to coronary arteriography during 1984 in Switzerland. A total of 4921 coronary arteriographies were performed among 4359 patients; this corresponds to 77 procedures/100,000 residents and 68 patients/100,000 residents. Rates for men are 4.2 times women's rates, and the highest utilization rate for both sexes are observed in the group aged 40-64. Large variations characterize cantonal and regional coronary arteriography rates. Similarly, the distribution of centers practising this procedure is not uniform. These observations are placed in the context of the general practice of coronary angiography, changes expected in the face of by-pass surgery and angioplasty expansion, and coronary heart disease data.
Resumo:
We analysed the composition of phyllosilicate minerals in sediments deposited by the Rhone and Oberaar glaciers (Swiss Alps), in order to identify processes and rates of biogeochemical weathering in relation to glacial erosion. The investigated sediments are part of chronosequences consisting of (A) suspended, "fresh" sediment in melt water; (B) terminal moraines from the Little Ice Age (LIA; approximately 1560-1850); and (C) tilts of the Younger Dryas interval (YD; approximately 11'500y BP). Secondary weathering products associated with the suspended sediment have not been observed: we therefore exclude intermittent subglacial storage and weathering of this material and assume that the suspended sediment is directly derived from mechanically abraded bedrock. This implies that biogeochemical weathering processes started once the glacially-derived sediment was deposited in the proglacial area. The combination of a developing vegetation cover, the generally high permeability allowing the percolation of precipitation, and the chemical reactivity related to the dominance of fine-grained material (<63 pm) drives the weathering process and the initial Umbrepts present in LIA profiles undergo podzolisation and lead to the formation of Humods observed in YD profiles. Systematic XRD analyses of these chronosequences show a progressive decrease in biotite contents and a concomitant increase in pedogenically formed vermiculite with increasing sediment age. Biotite contents decrease by 25-50% in the upper 30 cm of the moraines after 145-275 yr in the proglacial environment. Biotite weathering rates are calculated using the difference in the biotite content between unweathered and weathered glacial sediments within the investigated profiles. The reactive mineral surface area is estimated geometrically, both with regards to the total relative surface (WRT) as well as to the relative edge surface (WRE). WRT Biotite weathering rates are estimated as 10(-13)-10-(15) mol(biotite) m(biotite)(-2) s(-1). WRE Biotite weathering rates are on the order of 10(-13)-10(-14) mol(biotite) m(biotite)(-2) s(-1). Biotite weathering rates obtained by this study are in the order of one magnitude higher in comparison to other published field-based weathering rates. Using biotite as an indicator, we therefore suggest that glacially-derived material in the area of the Oberaar and Rhone glaciers is generally subjected to enhanced biogeochemical weathering, starting immediately after deposition in the proglacial zone and subsequently continuing for thousands of years after glacier retreat.
Resumo:
Contrasting with birds and mammals, most ectothermic vertebrates present homomorphic sex chromosomes, which might be due either to a high turnover rate or to occasional X-Y recombination. We tested these two hypotheses in a group of Palearctic green toads that diverged some 3.3 million years ago. Using sibship analyses of sex-linked markers, we show that all four species investigated share the same pair of sex chromosomes and a pattern of male heterogamety with drastically reduced X-Y recombination in males. Phylogenetic analyses of sex-linked sequences show that X and Y alleles cluster by species, not by gametolog. We conclude that X-Y homomorphy and fine-scale sequence similarity in these species do not stem from recent sex-chromosome turnovers, but from occasional X-Y recombination.
Resumo:
RÉSUMÉ : Le traitement répété à la phencyclidine (PCP), un bloqueur du récepteur NMDA (NMDAR), reproduit chez les rongeurs une partie de la symptomatologie typique de la schizophrénie. Le blocage prolongé du NMDAR par la PCP mime une hypofunction du NMDAR, une des principales altérations supposées exister dans les cerveaux des patients schizophréniques. Le but de notre étude était d'examiner les conséquences neurochimiques, métaboliques et fonctionnelles du traitement répété à la phencyclidine in vivo, au niveau du cortex préfrontal (cpf), une région cérébrale qui joue un rôle dans les déficits cognitifs observés chez les patients schizophréniques. Pour répondre à cette question, les rats ou les souris ont reçu chaque jour une injection soit de PCP (5 mg/kg), soit de solution saline, pendant 7 ou 14 jours. Les animaux ont ensuite été sacrifiés au moins 24 heures après le dernier traitement. Des tranches aiguës du cpf ont été préparées rapidement, puis stimulées avec une concentration élevée de KCI, de manière à induire une libération de glutamate à partir des terminaisons synaptiques excitatrices. Les résultats montrent que les tranches du cpf des animaux traités à la PCP ont libéré une quantité de glutamate significativement inférieure par rapport à celles des animaux contrôle. Ce déficit de libération a persisté 72 heures après la fin du traitement, tandis qu'il n'était pas observé dans le cortex visuel primaire, une autre région corticale. En outre, le traitement avec des antipsychotiques, l'halopéridol ou l'olanzapine, a supprimé le déficit induit par la PCP. Le même déficit de libération a été remarqué sur des synaptosomes obtenus à partir du cpf des animaux traités à la phenryclidine. Cette observation indique que la PCP induit une modification plastique adaptative du mécanisme qui contrôle la libération du glutamate dans les terminaisons synaptiques. Nous avons découvert que cette modification implique la sous-régulation d'un NMDAR présynaptique, qui serait doué d'un rôle d'autorécepteur stimulateur de la libération du glutamate. Grâce à des tests comportementaux conduits en parallèle et réalisés pour évaluer la fonctionnalité du cpf, nous avons observé chez les souris traitées à la PCP une flexibilité comportementale réduite lors d'un test de discrimination de stimuli visuels/tactiles. Le déficit cognitif était encore présent 4 jours après la dernière administration de PCP. La technique de l'autoradiographie quantitative du [14C]2-deoxyglucose a permis d'associer ce déficit à une réduction de l'activité métabolique cérébrale pendant le déroulement du test, particulièrement au niveau du cpf. Dans l'ensemble, nos résultats suggèrent que le blocage prolongé du NMDAR lors de l'administration répétée de PCP produit un déficit de libération du glutamate au niveau des terminaisons synaptiques excitatrices du cpf. Un tel déficit pourrait être provoqué par la sousrégulation d'un NMDAR présynaptique, qui aurait une fonction de stimulateur de libération; la transmission excitatrice du cpf s'en trouverait dans ce cas réduite. Ce résultat est en ligne avec l'activité métabolique et fonctionnelle réduite du cpf et l'observation de déficits cognitifs induits lors de l'administration de la PCP. ABSTRACT : Sub-chronic treatment with phencyclidine (PCP), an NMDA receptor (NMDAR) channel blocker, reproduces in rodents part of the symptomatology associated to schizophrenia in humans. Prolonged pharmacological blockade of NMDAR with PCP mimics NMDAR hypofunction, one of the main alterations thought to take place in the brains of schizophrenics. Our study was aimed at investigating the neurochemical, metabolic and behavioral consequences of repeated PCP administration in vivo, focusing on the functioning of the prefrontal cortex (pfc), a brain region highly relevant for the cognitive deficits observed in schizophrenic patients. Rats or mice received a daily administration of either PCP (5 mg/kg) or saline for 7 or 14 days. At least 24 hours after the last treatment the animals were sacrificed. Acute slices of the pfc were quickly prepared and challenged with high KCl to induce synaptic glutamate release. Pfc slices from PCP-treated animals released significantly less glutamate than slices from salinetreated animals. The deficit persisted 72 hours after the end of the treatment, while it was not observed in another cortical region: the primary visual cortex. Interestingly, treatment with antipsychotic drugs, either haloperidol or olanzapine, reverted the glutamate release defect induced by PCP treatment. The same release defect was observed in synaptosomes prepared from the pfc of PCP-treated animals, indicating that PCP induces a plastic adaptive change in the mechanism controlling glutamate release in the glutamatergic terminals. We discovered that such change most likely involves the down-regulation of a newly identified, pre-synaptic NMDAR with stimulatory auto-receptor function on glutamate release. In parallel sets of behavioral experiments challenging pfc function, mice sub-chronically treated with PCP displayed reduced behavioral flexibility (reversal learning) in a visual/tactile-cued discrimination task. The cognitive deficit was still evident 4 days after the last PCP administration and was associated to reduced brain metabolic activity during the performance of the behavioral task, notably in the pfc, as determined by [14C]2-deoxyglucose quantitative autoradiography. Clverall, our findings suggest that prolonged NMDAR blockade by repeated PCP administration results in a defect of glutamate release from excitatory afferents in the pfc, possibly ascribed to down-regulation of apre-synaptic stimulatory NMDAR. Deficient excitatory neurotransmission in the pfc is consistent with the reduced metabolic and functional activation of this area and the observed PCP-induced cognitive deficits.
Resumo:
Background and purpose: There is high interindividual variability in the activity of drug-metabolizing enzymes catalysing the oxidation of oxycodone [cytochrome P450 (CYP) 2D6 and 3A], due to genetic polymorphisms and/or drug-drug interactions. The effects of CYP2D6 and/or CYP3A activity modulation on the pharmacokinetics of oxycodone remains poorly explored. Experimental approach: A randomized crossover double-blind placebo-controlled study was performed with 10 healthy volunteers genotyped for CYP2D6 [six extensive (EM), two deficient (PM/IM) and two ultrarapid metabolizers (UM)]. The volunteers randomly received on five different occasions: oxycodone 0.2 mg·kg−1 and placebo; oxycodone and quinidine (CYP2D6 inhibitor); oxycodone and ketoconazole (CYP3A inhibitor); oxycodone and quinidine+ketoconazole; placebo. Blood samples for plasma concentrations of oxycodone and metabolites (oxymorphone, noroxycodone and noroxymorphone) were collected for 24 h after dosing. Phenotyping for CYP2D6 (with dextromethorphan) and CYP3A (with midazolam) were assessed at each session. Key results: CYP2D6 activity was correlated with oxymorphone and noroxymorphone AUCs and Cmax (−0.71 < Spearman correlation coefficient ρs < −0.92). Oxymorphone Cmax was 62% and 75% lower in PM than EM and UM. Noroxymorphone Cmax reduction was even more pronounced (90%). In UM, oxymorphone and noroxymorphone concentrations increased whereas noroxycodone exposure was halved. Blocking CYP2D6 (with quinidine) reduced oxymorphone and noroxymorphone Cmax by 40% and 80%, and increased noroxycodone AUC∞ by 70%. Blocking CYP3A4 (with ketoconazole) tripled oxymorphone AUC∞ and reduced noroxycodone and noroxymorphone AUCs by 80%. Shunting to CYP2D6 pathway was observed after CYP3A4 inhibition. Conclusions and implications: Drug-drug interactions via CYP2D6 and CYP3A affected oxycodone pharmacokinetics and its magnitude depended on CYP2D6 genotype.
Resumo:
There are various methods to collect adverse events (AEs) in clinical trials. The methods how AEs are collected in vaccine trials is of special interest: solicited reporting can lead to over-reporting events that have little or no biological relationship to the vaccine. We assessed the rate of AEs listed in the package insert for the virosomal hepatitis A vaccine Epaxal(®), comparing data collected by solicited or unsolicited self-reporting. In an open, multi-centre post-marketing study, 2675 healthy travellers received single doses of vaccine administered intramuscularly. AEs were recorded based on solicited and unsolicited questioning during a four-day period after vaccination. A total of 2541 questionnaires could be evaluated (95.0% return rate). Solicited self-reporting resulted in significantly higher (p<0.0001) rates of subjects with AEs than unsolicited reporting, both at baseline (18.9% solicited versus 2.1% unsolicited systemic AEs) and following immunization (29.6% versus 19.3% local AEs; 33.8% versus 18.2% systemic AEs). This could indicate that actual reporting rates of AEs with Epaxal(®) may be substantially lower than described in the package insert. The distribution of AEs differed significantly between the applied methods of collecting AEs. The most common AEs listed in the package insert were reported almost exclusively with solicited questioning. The reporting of local AEs was more likely than that of systemic AEs to be influenced by subjects' sex, age and study centre. Women reported higher rates of AEs than men. The results highlight the need for detailing the methods how vaccine tolerability was reported and assessed.
Resumo:
The acquisition of neuroendocrine (NE) characteristics by prostate cancer (PCa) cells is closely related to tumour progression and hormone resistance. The mechanisms by which NE cells influence PCa growth and progression are not fully understood. Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine involved in oncogenic processes, and MIF serum levels correlate with aggressiveness of PCa. Here, we investigated the regulation and the functional consequences of MIF expression during NE transdifferentiation of PCa cells. NE differentiation (NED) of LNCaP cells, initiated either by increasing intracellular levels of cAMP or by culturing cells in an androgen-depleted medium, was associated with markedly increased MIF release. Yet, intracellular MIF protein and mRNA levels and MIF gene promoter activity decreased during NED of LNCaP cells, suggesting that NED favours MIF release despite decreasing MIF synthesis. Adenoviral-mediated forced MIF expression in NE-differentiated LNCaP cells increased cell proliferation without affecting the expression of NE markers. Addition of exogenous recombinant MIF to LNCaP and PC-3 cells stimulated the AKT and ERK1/2 signalling pathways, the expression of genes involved in PCa, as well as proliferation and resistance to paclitaxel and thapsigargin-induced apoptosis. Altogether, these data provide evidence that increased MIF release during NED in PCa may facilitate cancer progression or recurrence, especially following androgen deprivation. Thus, MIF could represent an attractive target for PCa therapy.
Resumo:
OBJECTIVE: To investigate the influence of obesity on the regulation of myocardial glucose metabolism following protein kinase C (PKC) activation in obese (fa/fa) and lean (Fa/?) Zucker rats. DESIGN: Isolated hearts obtained from 17-week-old lean and obese Zucker rats were perfused with 200 nM phorbol 12-myristate 13-acetate (PMA) for different time periods prior to the evaluation of PKC and GLUT-4 translocation. For metabolic studies isolated hearts from 48 h starved Zucker rats were perfused with an erythrocytes-enriched buffer containing increased concentrations (10-100 nM) of PMA. MEASUREMENTS: Immunodetectable PKC isozymes and GLUT-4 were determined by Western blots. Glucose oxidation and glycolysis were evaluated by measuring the myocardial release of 14CO2 and 3H2O from [U-14C]glucose and [5-3H]glucose, respectively. RESULTS: PMA (200 nM) induced maximal translocation of ventricular PKCalpha from the cytosol to the membranes within 10 min. This translocation was 2-fold lower in the heart from obese rats when compared to lean rats. PMA also induced a significant translocation of ventricular GLUT-4 from the microsomal to the sarcolemmal fraction within 60 min in lean but not in obese rats. Rates of basal cardiac glucose oxidation and glycolysis in obese rats were approximately 2-fold lower than those of lean rats. Perfusion with increasing concentrations of PMA (10-100 nM) led to a significant decrease of cardiac glucose oxidation in lean but not in obese rats. CONCLUSION: Our results show that in the heart of the genetically obese Zucker rat, the impairment in PKCalpha activation is in line with a diminished activation of GLUT-4 as well as with the lack of PMA effect on glucose oxidation.