80 resultados para ROC Regression
Resumo:
Experimental and clinical evidence indicates that non-steroidal anti-inflammatory drugs and cyclooxygenase-2 inhibitors may have anti-cancer activities. Here we report on a patient with a metastatic melanoma of the leg who experienced a complete and sustained regression of skin metastases upon continuous single treatment with the cyclooxygenase-2 inhibitor rofecoxib. Our observations indicate that the inhibition of cyclooxygenase-2 can lead to the regression of disseminated skin melanoma metastases, even after failure of chemotherapy.
Resumo:
Tumor-regressions following tumor-associated-antigen vaccination in animal models contrast with the limited clinical outcomes in cancer patients. Most animal studies however used subcutaneous-tumor-models and questions arise as whether these are relevant for tumors growing in mucosae; whether specific mucosal-homing instructions are required; and how this may be influenced by the tumor.
Resumo:
Fluvial deposits are a challenge for modelling flow in sub-surface reservoirs. Connectivity and continuity of permeable bodies have a major impact on fluid flow in porous media. Contemporary object-based and multipoint statistics methods face a problem of robust representation of connected structures. An alternative approach to model petrophysical properties is based on machine learning algorithm ? Support Vector Regression (SVR). Semi-supervised SVR is able to establish spatial connectivity taking into account the prior knowledge on natural similarities. SVR as a learning algorithm is robust to noise and captures dependencies from all available data. Semi-supervised SVR applied to a synthetic fluvial reservoir demonstrated robust results, which are well matched to the flow performance
Resumo:
Kinematic functional evaluation with body-worn sensors provides discriminative and responsive scores after shoulder surgery, but the optimal movements' combination has not yet been scientifically investigated. The aim of this study was the development of a simplified shoulder function kinematic score including only essential movements. The P Score, a seven-movement kinematic score developed on 31 healthy participants and 35 patients before surgery and at 3, 6 and 12 months after shoulder surgery, served as a reference.Principal component analysis and multiple regression were used to create simplified scoring models. The candidate models were compared to the reference score. ROC curve for shoulder pathology detection and correlations with clinical questionnaires were calculated.The B-B Score (hand to the Back and hand upwards as to change a Bulb) showed no difference to the P Score in time*score interaction (P > .05) and its relation with the reference score was highly linear (R(2) > .97). Absolute value of correlations with clinical questionnaires ranged from 0.51 to 0.77. Sensitivity was 97% and specificity 94%.The B-B and reference scores are equivalent for the measurement of group responses. The validated simplified scoring model presents practical advantages that facilitate the objective evaluation of shoulder function in clinical practice.
Resumo:
BACKGROUND: Whole pelvis intensity modulated radiotherapy (IMRT) is increasingly being used to treat cervical cancer aiming to reduce side effects. Encouraged by this, some groups have proposed the use of simultaneous integrated boost (SIB) to target the tumor, either to get a higher tumoricidal effect or to replace brachytherapy. Nevertheless, physiological organ movement and rapid tumor regression throughout treatment might substantially reduce any benefit of this approach. PURPOSE: To evaluate the clinical target volume - simultaneous integrated boost (CTV-SIB) regression and motion during chemo-radiotherapy (CRT) for cervical cancer, and to monitor treatment progress dosimetrically and volumetrically to ensure treatment goals are met. METHODS AND MATERIALS: Ten patients treated with standard doses of CRT and brachytherapy were retrospectively re-planned using a helical Tomotherapy - SIB technique for the hypothetical scenario of this feasibility study. Target and organs at risk (OAR) were contoured on deformable fused planning-computed tomography and megavoltage computed tomography images. The CTV-SIB volume regression was determined. The center of mass (CM) was used to evaluate the degree of motion. The Dice's similarity coefficient (DSC) was used to assess the spatial overlap of CTV-SIBs between scans. A cumulative dose-volume histogram modeled estimated delivered doses. RESULTS: The CTV-SIB relative reduction was between 31 and 70%. The mean maximum CM change was 12.5, 9, and 3 mm in the superior-inferior, antero-posterior, and right-left dimensions, respectively. The CTV-SIB-DSC approached 1 in the first week of treatment, indicating almost perfect overlap. CTV-SIB-DSC regressed linearly during therapy, and by the end of treatment was 0.5, indicating 50% discordance. Two patients received less than 95% of the prescribed dose. Much higher doses to the OAR were observed. A multiple regression analysis showed a significant interaction between CTV-SIB reduction and OAR dose increase. CONCLUSIONS: The CTV-SIB had important regression and motion during CRT, receiving lower therapeutic doses than expected. The OAR had unpredictable shifts and received higher doses. The use of SIB without frequent adaptation of the treatment plan exposes cervical cancer patients to an unpredictable risk of under-dosing the target and/or overdosing adjacent critical structures. In that scenario, brachytherapy continues to be the gold standard approach.
Resumo:
Many of the most interesting questions ecologists ask lead to analyses of spatial data. Yet, perhaps confused by the large number of statistical models and fitting methods available, many ecologists seem to believe this is best left to specialists. Here, we describe the issues that need consideration when analysing spatial data and illustrate these using simulation studies. Our comparative analysis involves using methods including generalized least squares, spatial filters, wavelet revised models, conditional autoregressive models and generalized additive mixed models to estimate regression coefficients from synthetic but realistic data sets, including some which violate standard regression assumptions. We assess the performance of each method using two measures and using statistical error rates for model selection. Methods that performed well included generalized least squares family of models and a Bayesian implementation of the conditional auto-regressive model. Ordinary least squares also performed adequately in the absence of model selection, but had poorly controlled Type I error rates and so did not show the improvements in performance under model selection when using the above methods. Removing large-scale spatial trends in the response led to poor performance. These are empirical results; hence extrapolation of these findings to other situations should be performed cautiously. Nevertheless, our simulation-based approach provides much stronger evidence for comparative analysis than assessments based on single or small numbers of data sets, and should be considered a necessary foundation for statements of this type in future.
Resumo:
Ventilator-associated pneumonia (VAP) affects mortality, morbidity and cost of critical care. Reliable risk estimation might improve end-of-life decisions, resource allocation and outcome. Several scoring systems for survival prediction have been established and optimised over the last decades. Recently, new biomarkers have gained interest in the prognostic field. We assessed whether midregional pro-atrial natriuretic peptide (MR-proANP) and procalcitonin (PCT) improve the predictive value of the Simplified Acute Physiologic Score (SAPS) II and Sequential Related Organ Failure Assessment (SOFA) in VAP. Specified end-points of a prospective multinational trial including 101 patients with VAP were analysed. Death <28 days after VAP onset was the primary end-point. MR-proANP and PCT were elevated at the onset of VAP in nonsurvivors compared with survivors (p = 0.003 and p = 0.017, respectively) and their slope of decline differed significantly (p = 0.018 and p = 0.039, respectively). Patients with the highest MR-proANP quartile at VAP onset were at increased risk for death (log rank p = 0.013). In a logistic regression model, MR-proANP was identified as the best predictor of survival. Adding MR-proANP and PCT to SAPS II and SOFA improved their predictive properties (area under the curve 0.895 and 0.880). We conclude that the combination of two biomarkers, MR-proANP and PCT, improve survival prediction of clinical severity scores in VAP.
Resumo:
BACKGROUND: Legionella species cause severe forms of pneumonia with high mortality and complication rates. Accurate clinical predictors to assess the likelihood of Legionella community-acquired pneumonia (CAP) in patients presenting to the emergency department are lacking. METHODS: We retrospectively compared clinical and laboratory data of 82 consecutive patients with Legionella CAP with 368 consecutive patients with non-Legionella CAP included in two studies at the same institution. RESULTS: In multivariate logistic regression analysis we identified six parameters, namely high body temperature (OR 1.67, p < 0.0001), absence of sputum production (OR 3.67, p < 0.0001), low serum sodium concentrations (OR 0.89, p = 0.011), high levels of lactate dehydrogenase (OR 1.003, p = 0.007) and C-reactive protein (OR 1.006, p < 0.0001) and low platelet counts (OR 0.991, p < 0.0001), as independent predictors of Legionella CAP. Using optimal cut off values of these six parameters, we calculated a diagnostic score for Legionella CAP. The median score was significantly higher in Legionella CAP as compared to patients without Legionella (4 (IQR 3-4) vs 2 (IQR 1-2), p < 0.0001) with a respective odds ratio of 3.34 (95%CI 2.57-4.33, p < 0.0001). Receiver operating characteristics showed a high diagnostic accuracy of this diagnostic score (AUC 0.86 (95%CI 0.81-0.90), which was better as compared to each parameter alone. Of the 191 patients (42%) with a score of 0 or 1 point, only 3% had Legionella pneumonia. Conversely, of the 73 patients (16%) with > or =4 points, 66% of patients had Legionella CAP. CONCLUSION: Six clinical and laboratory parameters embedded in a simple diagnostic score accurately identified patients with Legionella CAP. If validated in future studies, this score might aid in the management of suspected Legionella CAP.
Resumo:
Robust estimators for accelerated failure time models with asymmetric (or symmetric) error distribution and censored observations are proposed. It is assumed that the error model belongs to a log-location-scale family of distributions and that the mean response is the parameter of interest. Since scale is a main component of mean, scale is not treated as a nuisance parameter. A three steps procedure is proposed. In the first step, an initial high breakdown point S estimate is computed. In the second step, observations that are unlikely under the estimated model are rejected or down weighted. Finally, a weighted maximum likelihood estimate is computed. To define the estimates, functions of censored residuals are replaced by their estimated conditional expectation given that the response is larger than the observed censored value. The rejection rule in the second step is based on an adaptive cut-off that, asymptotically, does not reject any observation when the data are generat ed according to the model. Therefore, the final estimate attains full efficiency at the model, with respect to the maximum likelihood estimate, while maintaining the breakdown point of the initial estimator. Asymptotic results are provided. The new procedure is evaluated with the help of Monte Carlo simulations. Two examples with real data are discussed.
Resumo:
The relationship between hypoxic stress, autophagy, and specific cell-mediated cytotoxicity remains unknown. This study shows that hypoxia-induced resistance of lung tumor to cytolytic T lymphocyte (CTL)-mediated lysis is associated with autophagy induction in target cells. In turn, this correlates with STAT3 phosphorylation on tyrosine 705 residue (pSTAT3) and HIF-1α accumulation. Inhibition of autophagy by siRNA targeting of either beclin1 or Atg5 resulted in impairment of pSTAT3 and restoration of hypoxic tumor cell susceptibility to CTL-mediated lysis. Furthermore, inhibition of pSTAT3 in hypoxic Atg5 or beclin1-targeted tumor cells was found to be associated with the inhibition Src kinase (pSrc). Autophagy-induced pSTAT3 and pSrc regulation seemed to involve the ubiquitin proteasome system and p62/SQSTM1. In vivo experiments using B16-F10 melanoma tumor cells indicated that depletion of beclin1 resulted in an inhibition of B16-F10 tumor growth and increased tumor apoptosis. Moreover, in vivo inhibition of autophagy by hydroxychloroquine in B16-F10 tumor-bearing mice and mice vaccinated with tyrosinase-related protein-2 peptide dramatically increased tumor growth inhibition. Collectively, this study establishes a novel functional link between hypoxia-induced autophagy and the regulation of antigen-specific T-cell lysis and points to a major role of autophagy in the control of in vivo tumor growth.
Resumo:
When researchers introduce a new test they have to demonstrate that it is valid, using unbiased designs and suitable statistical procedures. In this article we use Monte Carlo analyses to highlight how incorrect statistical procedures (i.e., stepwise regression, extreme scores analyses) or ignoring regression assumptions (e.g., heteroscedasticity) contribute to wrong validity estimates. Beyond these demonstrations, and as an example, we re-examined the results reported by Warwick, Nettelbeck, and Ward (2010) concerning the validity of the Ability Emotional Intelligence Measure (AEIM). Warwick et al. used the wrong statistical procedures to conclude that the AEIM was incrementally valid beyond intelligence and personality traits in predicting various outcomes. In our re-analysis, we found that the reliability-corrected multiple correlation of their measures with personality and intelligence was up to .69. Using robust statistical procedures and appropriate controls, we also found that the AEIM did not predict incremental variance in GPA, stress, loneliness, or well-being, demonstrating the importance for testing validity instead of looking for it.
Resumo:
ABSTRACT: BACKGROUND: Chest wall syndrome (CWS), the main cause of chest pain in primary care practice, is most often an exclusion diagnosis. We developed and evaluated a clinical prediction rule for CWS. METHODS: Data from a multicenter clinical cohort of consecutive primary care patients with chest pain were used (59 general practitioners, 672 patients). A final diagnosis was determined after 12 months of follow-up. We used the literature and bivariate analyses to identify candidate predictors, and multivariate logistic regression was used to develop a clinical prediction rule for CWS. We used data from a German cohort (n = 1212) for external validation. RESULTS: From bivariate analyses, we identified six variables characterizing CWS: thoracic pain (neither retrosternal nor oppressive), stabbing, well localized pain, no history of coronary heart disease, absence of general practitioner's concern, and pain reproducible by palpation. This last variable accounted for 2 points in the clinical prediction rule, the others for 1 point each; the total score ranged from 0 to 7 points. The area under the receiver operating characteristic (ROC) curve was 0.80 (95% confidence interval 0.76-0.83) in the derivation cohort (specificity: 89%; sensitivity: 45%; cut-off set at 6 points). Among all patients presenting CWS (n = 284), 71% (n = 201) had a pain reproducible by palpation and 45% (n = 127) were correctly diagnosed. For a subset (n = 43) of these correctly classified CWS patients, 65 additional investigations (30 electrocardiograms, 16 thoracic radiographies, 10 laboratory tests, eight specialist referrals, one thoracic computed tomography) had been performed to achieve diagnosis. False positives (n = 41) included three patients with stable angina (1.8% of all positives). External validation revealed the ROC curve to be 0.76 (95% confidence interval 0.73-0.79) with a sensitivity of 22% and a specificity of 93%. CONCLUSIONS: This CWS score offers a useful complement to the usual CWS exclusion diagnosing process. Indeed, for the 127 patients presenting CWS and correctly classified by our clinical prediction rule, 65 additional tests and exams could have been avoided. However, the reproduction of chest pain by palpation, the most important characteristic to diagnose CWS, is not pathognomonic.
Resumo:
This paper investigates the use of ensemble of predictors in order to improve the performance of spatial prediction methods. Support vector regression (SVR), a popular method from the field of statistical machine learning, is used. Several instances of SVR are combined using different data sampling schemes (bagging and boosting). Bagging shows good performance, and proves to be more computationally efficient than training a single SVR model while reducing error. Boosting, however, does not improve results on this specific problem.