65 resultados para Precursor Cleavage


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract : Post-translational modifications such as proteolytic processing, phosphorylation, and glycosylation, add extra layers of complexity to proteomes and allow a finely tuned regulation of the activity of many proteins. The evolutionarily conserved cell-cycle and transcriptional regulator HCP-] is regulated by proteolytic maturation via which a stable heterodirneric complex of two cleaved subunits is formed from a single precursor protein. The human HCF-1 precursor is cleaved at six nearly identical 26 amino acid sequence repeats, called HCF-1pro repeats, which represent uncommon protease recognition sites dedicated to human HCF-1 proteolysis. This proteolytic maturation process is conserved in vertebrate HCF-1 homologues and is essential for the functions of the human protein in cell-cycle regulation; the mechanisms that execute and control HCF-1 proteolysis, however, remain poorly understood. In this dissertation I investigate the mechanisms of proteolytic maturation of HCF-1 proteins in different species. I show that the Drosophila homolog of human HCF-1, called dHCP, is proteolytically cleaved via a different mechanism than human HCF-1. dHCP is processed by the same protease, called Taspase], which cleaves one of the key developmental regulators in flies, the Trithorax protein. Maturation of HCP proteins via Taspase] cleavage is probably not particular to dHCP as many invertebrate HCP proteins, particularly insects and flatworms, possess Taspase] recognition sites. In contrast, the vertebrate HCF-1 proteins lack Taspase] recognition sites and the HCF-1pro repeats are not Taspase1 substrates, suggesting that multiple mechanisms for HCF-1 proteolytic maturation have appeared during evolution. I also show that the proteolytic activity responsible for the cleavage of the HCP- 1pro repeats is very difficult to characterize, being resistant to most protease inhibitors and very sensitive to biochemical fractionation. Moreover, the HCF-1pro repeats represent complex protease recognition sites and I demonstrate that, in addition to be the HCF-1 cleavage sites, these repeated sequences, also recruit the OG1cNAc transferase OGT. The OGT protein and the OG1cNAc modification of HCF-1 are both important for HCF-1pro repeat proteolysis. Interestingly, a human recombinant OGT purified from insect cells is able to induce cleavage of a HCF-1pro-repeat precursor in vitro, indicating that OGT either (i) induces HCF-1 autoproteolysis,(ii) is the HCF-1pro- repeat proteolytic activity itself, or (iii) physically associates with a proteolytic activity that is conserved in insect cells. In any case, OGT plays an important role in HCF-1 proteolytic maturation and perhaps a broader role in HCF-1 biological function. Résumé : Les modifications post-traductionelles pomme le clivage protéolytique, la phosphorylation, et la glycosylation, augmentent significativement la complexité des protéomes et permettent une régulation fine de l'activité de beaucoup de protéines. La protéine HCF-1, qui est un régulateur du cycle cellulaire et de la transcription, est elle- même régulée par clivage protéolytique. La protéine HCF-1 est en effet coupée en deux sous-unités qui s'associent l'une a l'autre pour former la protéine mature. Le précurseur de la protéine HCF-1 humaine est clivé à six sites correspondant à six séquences répétées nommées les HCF-1pro repeats, chacune composée de 26 acide aminés. Les HCF-1pro- repeats ne ressemblent ai aucune séquence de clivage protéolytique connue et sont présentes seulement dans les protéines HCF-1 chez les vertébrés. Bien que la maturation protéolytique d'HCF-1 soit essentielle pour les activités de cette protéine pendant le cycle cellulaire, les mécanismes qui la contrôlent restent inconnus. Au cours de mon travail de thèse, j'ai analysé les mécanismes de clivage protéolytique des protéines HCF dans différentes espèces. J'ai montré que la protéine de Drosophile homologue d'HCF-1 humaine nommée dHCF est clivée par une protéase nommée Taspase1. Ainsi, dHCF est clivé par la même protéase que celle qui induit la maturation protéolytique d'un des principaux facteurs du développement chez la mouche, la protéine Trithorax. La maturation de dHCF via le clivage par la Taspase1 n'est pas spécifique à la mouche, mais est probablement étendu à plusieurs protéines HCF chez les invertébrés, surtout dans les familles des insectes et des plathehninthes, car ces protéines HCF présentent des sites de reconnaissance pour la Taspasel. Par contre, les protéines HCF-1 chez les vertébrés n'ont pas de sites de reconnaissance pour la Taspasel et cela suggère que différents mécanismes de maturation des protéines HCF- ls ont apparu au cours de l'évolution. J'ai montré aussi que les HCF-1pro-repeats sont clivés par une activité protéolytique très difficile a identifier, car elle est résistante à la plupart des inhibiteurs de protéases, mais elle est très sensible au fractionnement biochimique. En plus, les HCF-1pro-repeats sont un site de protéolyse complexe qui ne sert pas seulement au clivage des protéines HCF- chez les vertébrés mais aussi à recruter l'enzyme responsable de la O- GlcNAcylation nommée OGT. La protéine OGT et la O-GlcNAcylatio d'HCF-1 sont toutes les deux importantes pour le clivage protéolytique des HCF1pro-repeats. Curieusement, la protéine OGT humaine produite dans des cellules d'insectes est capable de cliver les HCF-1pro repeats in vitro et cela suggère que OGT soit (i) induit le clivage autocatalytique cl'HCF-1, soit (ii) est elle-même l'activité protéolytique qui clive HCF4, soit (iii) est associée à une activité protéolytique conservée dans les cellules d'insectes qui a été co-purifiée avec OGT. En conclusion, OGT joue un rôle important dans la maturation protéolytique d'HCF-1 et peut-être aussi un rôle plus large dans les fonctions biologiques de la protéine HCF-1.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proneuropeptide Y (ProNPY) undergoes cleavage at a single dibasic site Lys38-Arg39 resulting in the formation of 1-39 amino acid NPY which is further processed successively by carboxypeptidase-like and peptidylglycine alpha-amidating monooxygenase enzymes. To investigate whether prohormone convertases are involved in ProNPY processing, a vaccinia virus derived expression system was used to coexpress recombinant ProNPY with each of the prohormone convertases PC1/3, PC2, furin, and PACE4 in Neuro2A and NIH 3T3 cell lines as regulated neuroendocrine and constitutive prototype cell lines, respectively. The analysis of processed products shows that only PC1/3 generates NPY in NIH 3T3 cells while both PC1/3 and PC2 are able to generate NPY in Neuro2A cells. The convertases furin and PACE4 are unable to process ProNPY in either cell line. Moreover, comparative in vitro cleavage of recombinant NPY precursor by the enzymes PC1/3, PC2 and furin shows that only PC1/3 and PC2 are involved in specific cleavage of the dibasic site. Kinetic studies demonstrate that PC1/3 cleaves ProNPY more efficiently than PC2. The main difference between the cleavage efficiency is observed in the Vmax values whereas no major difference is observed in Km values. In addition the cleavage by PC1/3 and PC2 of two peptides reproducing the dibasic cleavage site with different amino acid sequence lengths namely (20-49)-ProNPY and (28-43)-ProNPY was studied. These shortened ProNPY substrates, when recognized by the enzymes, are more efficiently cleaved than ProNPY itself. The shortest peptide is not cleaved by PC2 while it is by PC1/3. On the basis of these observations it is proposed, first, that the constitutive secreted NPY does not result from the cleavage carried out by ubiquitously expressed enzymes furin and PACE4; second, that PC1/3 and PC2 are not equipotent in the cleavage of ProNPY; and third, substrate peptide length might discriminate PC1/3 and PC2 processing activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

B-cell-activating factor of the TNF family (BAFF)/BLyS contributes to B-cell homeostasis and function in the periphery. BAFF is expressed as a membrane-bound protein or released by proteolytic cleavage, but the functional importance of this processing event is poorly understood. Mice expressing BAFF with a mutated furin consensus cleavage site, i.e. furin-mutant BAFF (fmBAFF), were not different from BAFF-deficient mice with regard to their B-cell populations and responses to immunization. It is however noteworthy that an alternative processing event releases some soluble BAFF in fmBAFF mice. Mild overexpression (∼ 5-fold) of fmBAFF alone generated intermediate levels of B cells without improving humoral responses to immunization. Processed BAFF was however important for B-cell homeostasis, as peripheral B-cell populations and antibody responses were readily restored by administration of soluble BAFF trimers in BAFF-deficient mice. However, the rescue of CD23 expression in B cells of BAFF-deficient mice required both soluble BAFF trimers and fmBAFF, or a polymeric form of soluble BAFF (BAFF 60-mer). These results point to a predominant role of processed BAFF for B-cell homeostasis and function, and indicate possible accessory roles for membrane-bound BAFF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Disturbances of the cholesterol metabolism are associated with Alzheimer's disease (AD) risk and related cerebral pathology. Experimental studies found changing levels of cholesterol and its metabolites 24S-hydroxycholesterol (24S-OHC) and 27-hydroxycholesterol (27-OHC) to contribute to amyloidogenesis by increasing the production of soluble amyloid precursor protein (sAPP). The aim of this study was to evaluate the relationship between the CSF and circulating cholesterol 24S-OHC and 27-OHC, and the sAPP production as measured by CSF concentrations of sAPP forms in humans. The plasma and the CSF concentrations of cholesterol, 24S-OHC and 27-OHC, and the CSF concentrations of sAPPα, sAPPβ, and Aß1-42 were assessed in subjects with AD and controls with normal cognition. In multivariate regression tests including age, gender, albumin ratio, and apolipoprotein E (APOE)ε4 status CSF cholesterol, 24S-OHC, and 27-OHC independently predicted the concentrations of sAPPα and sAPPβ. The associations remained significant when analyses were separately performed in the AD group. Furthermore, plasma 27-OHC concentrations were associated with the CSF sAPP levels. The results suggest that high CSF concentrations of cholesterol, 24S-OHC, and 27-OHC are associated with increased production of both sAPP forms in AD.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phenotypic plasticity allows organisms to produce alternative phenotypes under different conditions and represents one of the most important ways by which organisms adaptively respond to the environment. However, the relationship between phenotypic plasticity and molecular evolution remains poorly understood. We addressed this issue by investigating the evolution of genes associated with phenotypically plastic castes, sexes, and developmental stages of the fire ant Solenopsis invicta. We first determined if genes associated with phenotypic plasticity in S. invicta evolved at a rapid rate, as predicted under theoretical models. We found that genes differentially expressed between S. invicta castes, sexes, and developmental stages all exhibited elevated rates of evolution compared with ubiquitously expressed genes. We next investigated the evolutionary history of genes associated with the production of castes. Surprisingly, we found that orthologs of caste-biased genes in S. invicta and the social bee Apis mellifera evolved rapidly in lineages without castes. Thus, in contrast to some theoretical predictions, our results suggest that rapid rates of molecular evolution may not arise primarily as a consequence of phenotypic plasticity. Instead, genes evolving under relaxed purifying selection may more readily adopt new forms of biased expression during the evolution of alternate phenotypes. These results suggest that relaxed selective constraint on protein-coding genes is an important and underappreciated element in the evolutionary origin of phenotypic plasticity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background: Glutathione (GSH) dysregulation at the gene, protein and functional levels observed in schizophrenia patients, and schizophrenia-like anomalies in GSH deficit experimental models, suggest that genetic glutathione synthesis impairments represent one major risk factor for the disease (Do et al., 2009). In a randomized, double blind, placebo controlled, add-on clinical trial of 140 patients, the GSH precursor N-Acetyl-Cysteine (NAC, 2 g/day, 6 months) significantly improved the negative symptoms and reduced side-effects due to antipsychotics (Berk et al., 2008). In a subset of patients (n=7), NAC (2 g/day, 2 months, cross-over design) also improved auditory evoked potentials, the NMDAdependent mismatch negativity (Lavoie et al, 2008). Methods: To determine whether increased GSH levels would modulate the topography of functional brain connectivity, we applied a multivariate phase synchronization (MPS) estimator (Knyazeva et al, 2008) to dense-array EEGs recorded during rest with eyes closed at the protocol onset, the point of crossover, and at its end. Phase synchronization phenomena are appealing because they can be associated to synchronized phases while the amplitudes stay uncorrelated. MPS measures the degree of interactions among the recorded neuronal oscillators by quantifiying to what extent they behave like a macro-oscillator (i.e. the oscillators are phase synchronous). To assess the whole-head synchronization topography, we computed the MPS sensor-wise over the cluster of locations defined by the sensor itself and he surrounding ones belonging to its second-order neighborhood (Carmeli et al, 2005). Such a cluster spans about 12 cm on average. Abstracts 245 Results: The whole-head imaging revealed a specific synchronization landscape in NAC compared to placebo condition. In particular, NAC increased MPS over frontal and left temporal regions in a frequency-specific manner. Importantly, the topography and direction of MPS changes were similar and robust in all 7 patients. Moreover, these changes correlated with the changes in the Liddle's score of disorganization (Liddle, 1987) thus linking EEG synchronization to the improvement of clinical picture. Discussion: The data suggest an important pathway towards new therapeutic strategies that target GSH dysregulation in schizophrenia. They also show the utility of MPS mapping as a marker of treatment efficacy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To compare the cumulative live birth rates obtained after cryopreservation of either pronucleate (PN) zygotes or early-cleavage (EC) embryos. DESIGN: Prospective randomized study. SETTING: University hospital. PATIENT(S): Three hundred eighty-two patients, involved in an IVF/ICSI program from January 1993 to December 1995, who had their supernumerary embryos cryopreserved either at the PN (group I) or EC (group II) stage. For 89 patients, cryopreservation of EC embryos was canceled because of poor embryo development (group III). Frozen-thawed embryo transfers performed up to December 1998 were considered. MAIN OUTCOME MEASURE(S): Age, oocytes, zygotes, cryopreserved and transferred embryos, damage after thawing, cumulative embryo scores, implantation, and cumulative live birth rates. RESULT(S): The clinical pregnancy and live birth rates were similar in all groups after fresh embryo transfers. Significantly higher implantation (10.5% vs. 5.9%) and pregnancy rates (19.5% vs. 10.9%; P< or = .02 per transfer after cryopreserved embryo transfers were obtained in group I versus group II, leading to higher cumulative pregnancy (55.5% vs. 38.6%; P < or = .002 and live birth rates (46.9% vs. 27.7%; P< or = .0001.Conclusion(s): The transfer of a maximum of three unselected embryos and freezing of all supernumerary PN zygotes can be safely done with significantly higher cumulative pregnancy chances than cryopreserving at a later EC stage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The dic(9;20)(p13.2;q11.2) is reported to be present in ∼2% of childhood B-cell precursor acute lymphoblastic leukemia (BCP ALL). However, it easily escapes detection by G-banding analysis and its true prevalence is hence unknown. We performed interphase fluorescence in situ hybridization analyses-in a three-step manner-using probes for: (i) CDKN2A at 9p21, (ii) 20p and 20q subtelomeres and (iii) cen9 and cen20. Out of 1033 BCP ALLs diagnosed from 2001 to 2006, 533 were analyzed; 16% (84/533) displayed 9p21 deletions, of which 30% (25/84) had dic(9;20). Thus, dic(9;20)-positivity was found in 4.7% (25/533), making it the third most common genetic subgroup after high hyperdiploidy and t(12;21)(p13;q22). The dic(9;20) was associated with a female predominance and an age peak at 3 years; 18/25 (72%) were allocated to non-standard risk treatment at diagnosis. Including cases detected by G-banding alone, 29 dic(9;20)-positive cases were treated according to the NOPHO ALL 2000 protocol. Relapses occurred in 24% (7/29) resulting in a 5-year event-free survival of 0.69, which was significantly worse than for t(12;21) (0.87; P=0.002) and high hyperdiploidy (0.82; P=0.04). We conclude that dic(9;20) is twice as common as previously surmised, with many cases going undetected by G-banding analysis, and that dic(9;20) should be considered a non-standard risk abnormality.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Karyotype analysis of acute lymphoblastic leukemia (ALL) at diagnosis has provided valuable prognostic markers for treatment stratification. However, reports of cytogenetic studies of relapsed ALL samples are limited. We compared the karyotypes from 436 nonselected B-cell precursor ALL patients at initial diagnosis and of 76 patients at first relapse. We noticed a relative increase of karyotypes that did not fall into the classic ALL cytogenetic subgroups (high hyperdiploidy, t(12;21), t(9;22), 11q23, t(1;19), <45 chromosomes) in a group of 29 patients at relapse (38%) compared to 130 patients at presentation (30%). Non-classical cytogenetic aberrations in these 29 patients were mostly found on chromosomes 1, 2, 7, 9, 13, 14, and 17. We also describe six rare reciprocal translocations, three of which involved 14q32. The most frequent abnormalities were found in 9p (12/29 cases) and were associated with a marked decrease in the duration of the second remission, but not of the probability of 10-year event-free survival after relapse treatment. From 29 patients with non-classical cytogenetic aberrations, only 8 (28%) had been stratified to a high risk-arm on the first treatment protocol, suggesting that this subgroup might benefit from the identification of new prognostic markers in future studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Weakening of cardiac function in patients with heart failure results from a loss of cardiomyocytes in the damaged heart. Cell replacement therapies as a way to induce myocardial regeneration in humans could represent attractive alternatives to classical drug-based approaches. However, a suitable source of precursor cells, which could produce a functional myocardium after transplantation, remains to be identified. In the present study, we isolated cardiovascular precursor cells from ventricles of human fetal hearts at 12 weeks of gestation. These cells expressed Nkx2.5 but not late cardiac markers such as α-actinin and troponin I. In addition, proliferating cells expressed the mesenchymal stem cell markers CD73, CD90, and CD105. Evidence for functional cardiogenic differentiation in vitro was demonstrated by the upregulation of cardiac gene expression as well as the appearance of cells with organized sarcomeric structures. Importantly, differentiated cells presented spontaneous and triggered calcium signals. Differentiation into smooth muscle cells was also detected. In contrast, precursor cells did not produce endothelial cells. The engraftment and differentiation capacity of green fluorescent protein (GFP)-labeled cardiac precursor cells were then tested in vivo after transfer into the heart of immunodeficient severe combined immunodeficient mice. Engrafted human cells were readily detected in the mouse myocardium. These cells retained their cardiac commitment and differentiated into α-actinin-positive cardiomyocytes. Expression of connexin-43 at the interface between GFP-labeled and endogenous cardiomyocytes indicated that precursor-derived cells connected to the mouse myocardium. Together, these results suggest that human ventricular nonmyocyte cells isolated from fetal hearts represent a suitable source of precursors for cell replacement therapies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this report, we confirm our previous findings of increased concentrations of soluble amyloid-β protein precursor (sAβPP) in cerebrospinal fluid (CSF) of patients with Alzheimer's disease (AD) and mild cognitive impairment (MCI) in a large cohort of patients (n = 314), not overlapping with those of our previous study, and we extend our observations by including a control group of participants with normal cognition. In addition, we investigate the effects of age, the APOEε4 genotype, and the blood-CSF barrier function on the concentrations of sAβPPα and sAβPPβ. The study participants were categorized according to clinical-neuropsychological criteria, supported by CSF neurochemical dementia diagnostics (NDD) analyses. sAβPPα concentrations in the AD group (132.0 ± 44.8) were significantly higher than in the control group (105.3 ± 37.3, p < 0.0005) but did not differ from the MCI-AD group (138.5 ± 39.5, p = 0.91). The MCI-AD group differed significantly from the MCI-O (97.3 ± 34.3, p < 0.05) group. There was no difference between the control and the MCI-O groups (p = 0.94). Similarly, sAβPPβ concentrations in the AD group (160.2 ± 54.3) were significantly higher than in the control group (129.9 ± 44.6, p < 0.005) but did not differ from the MCI-AD group (184.0 ± 56.4, p = 0.20). The MCI-AD group differed significantly from the MCI-O (127.8 ± 46.2, p < 0.05) group. There was no difference between the control and the MCI-O groups (p > 0.99). We observed highly significant correlation of the two sAβPP forms. Age and the CSF-serum albumin ratio were significant albeit weak predictors of the sAβPPα and sAβPPβ concentrations, while carrying the APOEε4 allele did not influenced the levels of the sAβPP forms. Taken together, the results strongly suggest that CSF sAβPP concentrations may be considered as an extension of already available NDD tools.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A crucial step in the life cycle of arenaviruses is the biosynthesis of the mature fusion-active viral envelope glycoprotein (GP) that is essential for virus-host cell attachment and entry. The maturation of the arenavirus GP precursor (GPC) critically depends on proteolytic processing by the cellular proprotein convertase (PC) subtilisin kexin isozyme-1 (SKI-1)/site-1 protease (S1P). Here we undertook a molecular characterization of the SKI-1/S1P processing of the GPCs of the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) and the pathogenic Lassa virus (LASV). Previous studies showed that the GPC of LASV undergoes processing in the endoplasmic reticulum (ER)/cis-Golgi compartment, whereas the LCMV GPC is cleaved in a late Golgi compartment. Herein we confirm these findings and provide evidence that the SKI-1/S1P recognition site RRLL, present in the SKI-1/S1P prodomain and LASV GPC, but not in the LCMV GPC, is crucial for the processing of the LASV GPC in the ER/cis-Golgi compartment. Our structure-function analysis revealed that the cleavage of arenavirus GPCs, but not cellular substrates, critically depends on the autoprocessing of SKI-1/S1P, suggesting differences in the processing of cellular and viral substrates. Deletion mutagenesis showed that the transmembrane and intracellular domains of SKI-1/S1P are dispensable for arenavirus GPC processing. The expression of a soluble form of the protease in SKI-I/S1P-deficient cells resulted in the efficient processing of arenavirus GPCs and rescued productive virus infection. However, exogenous soluble SKI-1/S1P was unable to process LCMV and LASV GPCs displayed at the surface of SKI-I/S1P-deficient cells, indicating that GPC processing occurs in an intracellular compartment. In sum, our study reveals important differences in the SKI-1/S1P processing of viral and cellular substrates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This chapter argues that the electoral competition between the New Left and the Radical Right is best understood as a cultural divide anchored in different class constituencies. Based on individual-level data from the European Social Survey, we analyze the links between voters' class position, their economic and cultural preferences and their party choice for four small and affluent European countries. We find a striking similarity in the class pattern across countries. Everywhere, the New Left attracts disproportionate support from socio-cultural professionals and presents a clear-cut middle-class profile, whereas the Radical Right is most successful among production and service workers and receives least support from professionals. In general, the Radical Right depends on the votes of lowereducated men and older citizens and has turned into a new type of working-class party. However, its success within the working-class is not due to economic, but to cultural issues. The voters of the Radical Right collide with those of the New Left over a cultural conflict of identity and community - and not over questions of redistribution. A full-grown cleavage has thus emerged in the four countries under study, separating a libertarian-universalistic pole from an authoritarian-communitarian pole and going along with a process of class realignment.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Résume Les caspases sont un groupe de protéases à cystéine qui s?activent lors de l'apoptose. Leur activation induit le clivage de nombreuses cibles intracellulaires, conduisant à l'activation de voies pro-apoptotiques et finalement au démantèlement des cellules. Cependant, des caspases ont été décrites dans de nombreux autres processus indépendants de l'apoptose, notamment dans la physiologie des cellules hématopoïétiques, des cellules musculaires, des cellules de la peau et des neurones. Comment est-ce que les cellules réconcilient-elles ces deux fonctions distinctes? Une partie de la réponse réside dans la nature des substrats qu'elles clivent. Certains substrats, une fois clivées, deviennent anti-apoptotiques. RasGAP est une cible des caspases et contient deux sites spécifiques de clivage par les caspases. Lorsque le niveau d?activité des caspases est faible le clivage de RasGAP produit un fragment N-terminal qui active un signal antiapoptotique, relayé par la voie de Ras/PI3K/Akt. Lorsque le niveau d?activité des caspases est plus élevé le fragment RasGAP N-terminal est à nouveau clivé, perdant de ce fait ses propriétés anti-apoptotiques. Dans cette étude, nous avons mis en évidence que l'activation de la voie Ras/PI3K/Akt induite par le fragment RasGAP N-terminal dépend de RasGAP lui-même. Par ailleurs, dans le but d?étudier l?importance du clivage de RasGAP dans un contexte physiologique, nous avons développé un modèle animal exprimant une gêne mutée de RasGAP de sorte que la protéine est devenu insensible a l?action de caspases. Les données préliminaires obtenues montrent que le clivage de RasGAP n'est pas indispensable pour le développement et l?homéostasie chez la souris. Finalement, nous avons développé une souris transgénique surexprimant le fragment de RasGAP N-terminal dans les cellules ß du pancréas. Les animaux obtenus ne montrent pas de symptômes dans les conditions basales bien qu?ils soient plus résistants au diabète induit expérimentalement. Ces résultats montrent que la surexpression du fragment N-terminal de RasGAP protége efficacement les cellules ß du pancréas de l?apoptose induite par le stress sans pourtant affecter d?autres paramètres physiologiques des Ilot de Langerhans.<br/><br/>Caspases are a series of proteases that are activated during apoptosis. Their activation causes the cleavage of numerous intracellular targets, which leads to cell dismantling and activation of pro-apoptotic pathways. Caspases have been found to be involved in the physiology of numerous cell types including haematopoietic cells, muscle cells, skin cells and neurons. How cells conciliate these two opposite functions? Part of the answer lies in the nature of the substrates they cleave. Some substrates become anti-apoptotic once cleaved by caspases. RasGAP is a caspase substrate that possesses two conserved caspase-cleavage sites. At low caspase activity, RasGAP is first cleaved and the generated N-terminal fragment activates a potent anti-apoptotic signal, mediated by the Ras/PI3K/Akt pathway. At higher caspase activity, the N-terminal fragment is further cleaved thereby losing its anti-apoptotic properties. In the present study we show that the activation of the Ras/PI3K/Akt pathway mediated by RasGAP N-terminal fragment is dependent on RasGAP itself. Moreover, to study the role of RasGAP cleavage in a physiological model, we have developed a knock-in mouse model expressing a RasGAP mutant that is not cleavable by caspases. Preliminary data shows that RasGAP cleavage is not required for normal development and homeostasis in mice. Finally, we have developed a transgenic mouse model overexpressing RasGAP N-terminal fragment in the ß-cell of the pancreas. In basal conditions, these mice show no difference with their wt counterparts. However, they are protected against experimentally induced diabetes. These results indicate that fragment N can protect ? cells from stress-induced apoptosis without affecting other physiological parameters of the Islets.