96 resultados para Precipitation (chemical)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Identifying adaptive genetic variation is a challenging task, in particular in non-model species for which genomic information is still limited or absent. Here, we studied distribution patterns of amplified fragment length polymorphisms (AFLPs) in response to environmental variation, in 13 alpine plant species consistently sampled across the entire European Alps. Multiple linear regressions were performed between AFLP allele frequencies per site as dependent variables and two categories of independent variables, namely Moran's eigenvector map MEM variables (to account for spatial and unaccounted environmental variation, and historical demographic processes) and environmental variables. These associations allowed the identification of 153 loci of ecological relevance. Univariate regressions between allele frequency and each environmental factor further showed that loci of ecological relevance were mainly correlated with MEM variables. We found that precipitation and temperature were the best environmental predictors, whereas topographic factors were rarely involved in environmental associations. Climatic factors, subject to rapid variation as a result of the current global warming, are known to strongly influence the fate of alpine plants. Our study shows, for the first time for a large number of species, that the same environmental variables are drivers of plant adaptation at the scale of a whole biome, here the European Alps.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

14C dating models are limited when considering recent groundwater for which the carbon isotopic signature of the total dissolved inorganic carbon (TDIC) is mainly acquired in the unsaturated zone. Reducing the uncertainties of dating thus implies a better identification of the processes controlling the carbon isotopic composition of the TDIC during groundwater recharge. Geochemical interactions between gas, water and carbonates in the unsaturated zone were investigated for two aquifers (the carbonate-free Fontainebleau sands and carbonate-bearing Astian sands, France) in order to identify the respective roles of CO2 and carbonates on the carbon isotopic signatures of the TDIC; this analysis is usually approached using open or closed system terms. Under fully open system conditions, the seasonality of the 13C values in the soil CO2 can lead to important uncertainties regarding the so-called "initial 14C activity" used in 14C correction models. In a carbonate-bearing unsaturated zone such as in the Astian aquifer, we show that an approach based on fully open or closed system conditions is not appropriate. Although the chemical saturation between water and calcite occurs rapidly within the first metre of the unsaturated zone, the carbon isotopic contents (δ13C) of the CO2 and the TDIC evolve downward, impacted by the dissolution-precipitation of the carbonates. In this study, we propose a numerical approach to describe this evolution. The δ13C and the A 14C (radiocarbon activity) of the TDIC at the base of the carbonate-hearing unsaturated zone depends on (i) the δ13C and the A 14C of the TDIC in the soil determined by the soil CO2, (ii) the water's residence time in the unsaturated zone and (iii) the carbonate precipitation-dissolution fluxes. In this type of situation, the carbonate δ13C-A 14C evolutions indicate the presence of secondary calcite and permit the calculation of its accretion flux, equal to ~ 4.5 ± 0.5 x 10-9 mol grock-1 yr-1. More generally, for other sites under temperate climate and with similar properties to the Astian sands site, this approach allows for a reliable determination of the carbon isotopic composition at the base of the unsaturated zone as the indispensable "input function" data of the carbon cycle into the aquifer.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We show proof of principle for assessing compound biodegradation at 1-2 mg C per L by measuring microbial community growth over time with direct cell counting by flow cytometry. The concept is based on the assumption that the microbial community will increase in cell number through incorporation of carbon from the added test compound into new cells in the absence of (as much as possible) other assimilable carbon. We show on pure cultures of the bacterium Pseudomonas azelaica that specific population growth can be measured with as low as 0.1 mg 2-hydroxybiphenyl per L, whereas in mixed community 1 mg 2-hydroxybiphenyl per L still supported growth. Growth was also detected with a set of fragrance compounds dosed at 1-2 mg C per L into diluted activated sludge and freshwater lake communities at starting densities of 10(4) cells per ml. Yield approximations from the observed community growth was to some extent in agreement with standard OECD biodegradation test results for all, except one of the examined compounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In their invasive ranges, Argentine ant populations often form one geographically vast supercolony, genetically and chemically uniform within which there is no intraspecific aggression. Here we present regional patterns of intraspecific aggression, cuticular hydrocarbons (CHCs) and population genetics of 18 nesting sites across Corsica and the French mainland. Aggression tests confirm the presence of a third European supercolony, the Corsican supercolony, which exhibits moderate to high levels of aggression, depending on nesting sites, with the Main supercolony, and invariably high levels of aggression with the Catalonian supercolony. The chemical analyses corroborated the behavioural data, with workers of the Corsican supercolony showing moderate differences in CHCs compared to workers of the European Main supercolony and strong differences compared to workers of the Catalonian supercolony. Interestingly, there were also clear genetic differences between workers of the Catalonian supercolony and the two other supercolonies at both nuclear and mitochondrial markers, but only very weak genetic differentiation between nesting sites of the Corsican and Main supercolonies (F(ST) = 0.06). A detailed comparison of the genetic composition of supercolonies also revealed that, if one of the last two supercolonies derived from the other, it is the Main supercolony that derived from the Corsican supercolony rather than the reverse. Overall, these findings highlight the importance of conducting more qualitative and quantitative analyses of the level of aggression between supercolonies, which has to be correlated with genetic and chemical data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

RésuméLes champignons sont impliqués dans les cycles biogéochimiques de différentes manières. En particulier, ils sont reconnus en tant qu'acteurs clés dans la dégradation de la matière organique, comme fournisseurs d'éléments nutritifs via l'altération des minéraux mais aussi comme grands producteurs d'acide oxalique et de complexes oxalo-métalliques. Toutefois, peu de choses sont connues quant à leur contribution à la genèse d'autres types de minéraux, tel que le carbonate de calcium (CaCO3). Le CaCO3 est un minéral ubiquiste dans de nombreux écosystèmes et il joue un rôle essentiel dans les cycles biogéochimiques du carbone (C) et du calcium (Ca). Le CaCO3 peut être d'origine physico-chimique ou biogénique et de nombreux organismes sont connus pour contrôler ou induire sa biominéralisation. Les champignons ont souvent été soupçonnés d'être impliqué dans ce processus, cependant il existe très peu d'informations pour étayer cette hypothèse.Cette thèse a eu pour but l'étude de cet aspect négligé de l'impact des champignons dans les cycles biogéochimiques, par l'exploration de leur implication potentielle dans la formation d'un type particulier de CaCO3 secondaires observés dans les sols et dans les grottes des environnements calcaires. Dans les grottes, ces dépôts sont appelés moonmilk, alors que dans les sols on les appelle calcite en aiguilles. Cependant ces deux descriptions correspondent en fait au même assemblage microscopique de deux habitus particulier de la calcite: la calcite en aiguilles (au sens strict du terme cette fois-ci) et les nanofibres. Ces deux éléments sont des habitus aciculaires de la calcite, mais présentent des dimensions différentes. Leur origine, physico-chimique ou biologique, est l'objet de débats intenses depuis plusieurs années déjà.L'observation d'échantillons environnementaux avec des techniques de microscopie (microscopie électronique et micromorphologie), ainsi que de la microanalyse EDX, ont démontré plusieurs relations intéressantes entre la calcite en aiguilles, les nanofibres et des éléments organiques. Premièrement, il est montré que les nanofibres peuvent être organiques ou minérales. Deuxièmement, la calcite en aiguilles et les nanofibres présentent de fortes analogies avec des structures hyphales, ce qui permet de confirmer l'hypothèse de leur origine fongique. En outre, des expériences en laboratoire ont confirmé l'origine fongique des nanofibres, par des digestions enzymatiques d'hyphes fongiques. En effet, des structures à base de nanofibres, similaires à celles observées dans des échantillons naturels, ont pu être produites par cette approche. Finalement, des enrichissements en calcium ont été mesurés dans les parois des hyphes et dans des inclusions intrahyphales provenant d'échantillons naturels de rhizomorphes. Ces résultats suggèrent une implication de la séquestration de calcium dans la formation de la calcite en aiguilles et/ou des nanofibres.Plusieurs aspects restent à élucider, en particulier la compréhension des processus physiologiques impliqués dans la nucléation de calcite dans les hyphes fongiques. Cependant, les résultats obtenus dans cette thèse ont permis de confirmer l'implication des champignons dans la formation de la calcite en aiguilles et des nanofibres. Ces découvertes sont d'une grande importance dans les cycles biogéochimiques puisqu'ils apportent de nouveaux éléments dans le cycle couplé C-Ca. Classiquement, les champignons sont considérés comme étant impliqués principalement dans la minéralisation de la matière organique et dans l'altération minérale. Cette étude démontre que les champignons doivent aussi être pris en compte en tant qu'agents majeurs de la genèse de minéraux, en particulier de CaCO3. Ceci représente une toute nouvelle perspective en géomycologie quant à la participation des champignons au cycle biologique du C. En effet, la présence de ces précipitations de CaCO3 secondaires représente un court-circuit dans le cycle biologique du C puisque du C inorganique du sol se retrouve piégé dans de la calcite plutôt que d'être retourné dans l'atmosphère.AbstractFungi are known to be involved in biogeochemical cycles in numerous ways. In particular, they are recognized as key players in organic matter recycling, as nutrient suppliers via mineral weathering, as well as large producers of oxalic acid and metal-oxalate. However, little is known about their contribution to the genesis of other types of minerals such as calcium carbonate (CaCO3). Yet, CaC03 are ubiquitous minerals in many ecosystems and play an essential role in the biogeochemical cycles of both carbon (C) and calcium (Ca). CaC03 may be physicochemical or biogenic in origin and numerous organisms have been recognized to control or induce calcite biomineralization. While fungi have often been suspected to be involved in this process, only scarce information support this hypothesis.This Ph.D. thesis aims at investigating this disregarded aspect of fungal impact on biogeochemical cycles by exploring their possible implication in the formation of a particular type of secondary CaC03 deposit ubiquitously observed in soils and caves from calcareous environments. In caves, these deposits are known as moonmilk, whereas in soils, they are known as Needle Fibre Calcite (NFC - sensu lato). However, they both correspond to the same microscopic assemblage of two distinct and unusual habits of calcite: NFC {sensu stricto) and nanofibres. Both features are acicular habits of calcite displaying different dimensions. Whether these habits are physicochemical or biogenic in origin has been under discussion for a long time.Observations of natural samples using microscopic techniques (electron microscopy and micromorphology) and EDX microanalyses have demonstrated several interesting relationships between NFC, nanofibres, and organic features. First, it has shown that nanofibres can be either organic or minera! in nature. Second, both nanofibres and NFC display strong structural analogies with fungal hyphal features, supporting their fungal origin. Furthermore, laboratory experiments have confirmed the fungal origin of nanofibres through an enzymatic digestion of fungal hyphae. Indeed, structures made of nanofibres with similar features as those observed in natural samples have been produced. Finally, calcium enrichments have been measured in both cell walls and intrahyphal inclusions of hyphae from rhizomorphs sampled in the natural environment. These results point out an involvement of calcium sequestration in nanofibres and/or NFC genesis.Several aspects need further investigation, in particular the understanding of the physiological processes involved in hyphal calcite nucleation. However, the results obtained during this study have allowed the confirmation of the implication of fungi in the formation of both NFC and nanofibres. These findings are of great importance regarding global biogeochemical cycles as they bring new insights into the coupled C and Ca cycles. Conventionally, fungi are considered to be involved in organic matter mineralization and mineral weathering. In this study, we demonstrate that they must also be considered as major agents in mineral genesis, in particular CaC03. This is a completely new perspective in geomycology regarding the role of fungi in the short-term (or biological) C cycle. Indeed, the presence of these secondary CaC03 precipitations represents a bypass in the short- term carbon cycle, as soil inorganic C is not readily returned to the atmosphere.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background and objective: Patients in the ICU often get many intravenous (iv) drugs at the same time. Even with three-lumen central venous catheters, the administration of more than one drug in the same iv line (IVL) is frequently necessary. The objective of this study was to observe how nurses managed to administer these many medications and to evaluate the proportion of two-drugs associations (TDA) that are compatible or not, based on known compatibility data. Design: Observational prospective study over 4 consecutive months. All patients receiving simultaneously more than one drugs in the same IVL (Y-site injection or mixed in the same container) were included. For each patient, all iv drugs were recorded, as well as concentration, infusion solution, location on the IVL system, time, rate and duration of administration. For each association of two or more drugs, compatibility of each drug was checked with each other. Compatibilities between these pairs of drugs were assessed using published data (mainly Trissel LA. Handbook on Injectable Drugs and Trissel's Tables of Physical Compatibility) and visual tests performed in our quality control laboratory. Setting: 34 beds university hospital adult ICU. Main outcome measures: Percentage of compatibilities and incompatibilities between drugs administered in the same IVL. Results: We observed 1,913 associations of drugs administered together in the same IVL, 783 implying only two drugs. The average number of drugs per IVL was 3.1 ± 0.8 (range: 2-9). 83.2% of the drugs were given by continuous infusion, 14.3% by intermittent infusion and 2.5% in bolus. The associations observed allowed to form 8,421 pairs of drugs (71.7% drug-drug and 28.3% drug-solute). According to literature data, 80.2% of the association were considered as compatible and 4.4% incompatible. 15.4% were not interpretable because of different conditions between local practices and those described in the literature (drug concentration, solute, etc.) or because of a lack of data. After laboratory tests performed on the most used drugs (furosemide, KH2PO4, morphine HCl, etc.), the proportion of compatible TDA raised to 85.7%, the incompatible stayed at 4.6% and only 9.7% remain unknown or not interpretable. Conclusions: Nurses managed the administration of iv medications quite well, as only less than 5% of observed TDA were considered as incompatible. But the 10% of TDA with unavailable compatibility data should have been avoided too, since the consequences of their concomitant administration cannot be predictable. For practical reasons, drugs were analysed only by pairs, which constitutes the main limit of this work. The average number of drugs in the same association being three, laboratory tests are currently performed to evaluate some of the most observed three-drugs associations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To control the selective adhesion of human endothelial cells and human serum proteins to bioceramics of different compositions, a multifunctional ligand containing a cyclic arginine-glycine-aspartate (RGD) peptide, a tetraethylene glycol spacer, and a gallate moiety was designed, synthesized, and characterized. The binding of this ligand to alumina-based, hydroxyapatite-based, and calcium phosphate-based bioceramics was demonstrated. The conjugation of this ligand to the bioceramics induced a decrease in the nonselective and integrin-selective binding of human serum proteins, whereas the binding and adhesion of human endothelial cells was enhanced, dependent on the particular bioceramics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La présence de fluide météorique synchrone à l'activité du détachement (Farmin, 2003 ; Mulch et al., 2007 ; Gébelin et al., 2011), implique que les zones de cisaillement sont des systèmes ouverts avec des cellules de convections à l'échelle crustale et un intense gradient géothermique au sein du détachement (Morrison et Anderson, 1998, Gottardi et al., 2011). De plus, les réactions métamorphiques liées à des infiltrations fluides dans les zones de cisaillement extensionnel peuvent influencer les paramètres rhéologiques du système (White and Knipe, 1978), et impliquer la localisation de la déformation dans la croûte. Dans ce manuscrit, deux zones de cisaillement infiltrées par des fluides météoriques sont étudiées, l'une étant largement quartzitique, et l'autre de nature granitique ; les relations entre déformation, fluides, et roches s'appuient sur des approches structurales, microstructurales, chimiques et isotopiques. L'étude du détachement du Columbia river (WA, USA) met en évidence que la déformation mylonitique se développe en un million d'années. La phase de cisaillement principal s'effectue à 365± 30°C d'après les compositions isotopiques en oxygène du quartz et de la muscovite. Ces minéraux atteignent l'équilibre isotopique lors de leur recristallisation dynamique contemporaine à la déformation. La zone de cisaillement enregistre une baisse de température, remplaçant le mécanisme de glissement par dislocation par celui de dissolution- précipitation dans les derniers stades de l'activité du détachement. La dynamique de circulation fluide bascule d'une circulation pervasive à chenalisée, ce qui engendre localement la rupture des équilibres d'échange isotopiques. La zone de cisaillement de Bitterroot (MT, USA) présente une zone mylonitique de 600m d'épaisseur, progressant des protomylonites aux ultramylonites. L'intensité de la localisation de la déformation se reflète directement sur l'hydratation des feldspaths, réaction métamorphique majeure dite de « rock softening ». Une étude sur roche totale indique des transferts de masse latéraux au sein des mylonites, et d'importantes pertes de volume dans les ultramylonites. La composition isotopique en hydrogène des phyllosilicates met en évidence la présence (1) d'une source magmatique/métamorphique originelle, caractérisée par les granodiorites ayant conservé leur foliation magmatique, jusqu'aux protomylonites, et (2) une source météorique qui tamponne les valeurs des phyllosilicates des fabriques mylonitiques jusqu'aux veines de quartz non-déformées. Les compositions isotopiques en oxygène des minéraux illustrent le tamponnement de la composition du fluide météorique par l'encaissant. Ce phénomène cesse lors du processus de chloritisation de la biotite, puisque les valeurs des chlorites sont extrêmement négatives (-10 per mil). La thermométrie isotopique indique une température d'équilibre isotopique de la granodiorite entre 600-500°C, entre 500-300°C dans les mylonites, et entre 300 et 200°C dans les fabriques cassantes (cataclasites et veines de quartz). Basé sur les résultats issus de ce travail, nous proposons un modèle général d'interactions fluide-roches-déformation dans les zones de détachements infiltrées par des fluides météoriques. Les zones de détachements évoluent rapidement (en quelques millions d'années) au travers de la transition fragile-ductile ; celle-ci étant partiellement contrôlée par l'effet thermique des circulations de fluide météoriques. Les systèmes de détachements sont des lieux où la déformation et les circulations fluides sont couplées ; évoluant rapidement vers une localisation de la déformation, et de ce fait, une exhumation efficace. - The presence of meteoric fluids synchronous with the activity of extensional detachment zones (Famin, 2004; Mulch et al., 2007; Gébelin et al., 2011) implies that extensional systems involve fluid convection at a crustal scale, which results in high geothermal gradients within active detachment zones (Morrison and Anderson, 1998, Gottardi et al., 2011). In addition, the metamorphic reactions related to fluid infiltration in extensional shear zones can influence the rheology of the system (White and Knipe, 1978) and ultimately how strain localizes in the crust. In this thesis, two shear zones that were permeated by meteoric fluids are studied, one quartzite-dominated, and the other of granitic composition; the relations between strain, fluid, and evolving rock composition are addressed using structural, microstructural, and chemical/isotopic measurements. The study of the Columbia River detachment that bounds the Kettle core complex (Washington, USA) demonstrates that the mylonitic fabrics in the 100 m thick quartzite- dominated detachment footwall developed within one million years. The main shearing stage occurred at 365 ± 30°C when oxygen isotopes of quartz and muscovite equilibrated owing to coeval deformation and dynamic recrystallization of these minerals. The detachment shear zone records a decrease in temperature, and dislocation creep during detachment shearing gave way to dissolution-precipitation and fracturing in the later stages of detachment activity. Fluid flow switched from pervasive to channelized, leading to isotopic disequilibrium between different minerals. The Bitterroot shear zone detachment (Montana, USA) developed a 600 m thick mylonite zone, with well-developed transitions from protomylonite to ultramylonite. The localization of deformation relates directly to the intensity of feldspar hydration, a major rock- softening metamorphic reaction. Bulk-rock analyses of the mylonitic series indicate lateral mass transfer in the mylonite (no volume change), and significant volume loss in ultramylonite. The hydrogen isotope composition of phyllosilicates shows (1) the presence of an initial magmatic/metamorphic source characterized by the granodiorite in which a magmatic, and gneissic (protomylonite) foliation developed, and (2) a meteoric source that buffers the values of phyllosilicates in mylonite, ultramylonite, cataclasite, and deformed and undeformed quartz veins. The mineral oxygen isotope compositions were buffered by the host-rock compositions until chloritization of biotite started; the chlorite oxygen isotope values are negative (-10 per mil). Isotope thermometry indicates a temperature of isotopic equilibrium of the granodiorite between 600-500°C, between 500-300°C in the mylonite, and between 300 and 200°C for brittle fabrics (cataclasite and quartz veins). Results from this work suggest a general model for fluid-rock-strain feedbacks in detachment systems that are permeated by meteoric fluids. Phyllosilicates have preserved in their hydrogen isotope values evidence for the interaction between rock and meteoric fluids during mylonite development. Fluid flow generates mass transfer along the tectonic anisotropy, and mylonites do not undergo significant volume change, except locally in ultramylonite zones. Hydration of detachment shear zones attends mechanical grain size reduction and enhances strain softening and localization. Self-exhuming detachment shear zones evolve rapidly (a few million years) through the transition from ductile to brittle, which is partly controlled by the thermal effect of circulating surface fluids. Detachment systems are zones in the crust where strain and fluid flow are coupled; these systems. evolve rapidly toward strain localization and therefore efficient exhumation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many studies in continental areas have successfully used the oxygen isotope composition of fossil ostracod valves to reconstruct past hydrological conditions associated with large changes in climate. Yet, ostracods are known to crystallise their valves out of isotopic equilibrium for oxygen and they generally have higher 18O contents compared to inorganic calcite grown at equilibrium under the same condi- tions. A review of vital offsets determined for continental ostracods indicates that vital offsets might change from site to site, questioning a potential influence of environmental conditions on oxygen isotope fractionation in ostracods. Results from the literature suggest that pH has no influence on ostracod vital offset. A re-evaluation of results from Li and Liu (J Paleolimnol 43:111-120, 2010) suggests that salin- ity may influence oxygen isotope fractionation in ostracods, with lower vital offsets for higher salinities. Such a relationship was also observed for the vital offsets determined by Chivas et al. (The ostracoda- applications in quaternary research. American Geo- physical Union, Washington, DC, 2002). Yet, when results of all studies are compiled, the correlation between vital offsets and salinity is low while the correlation between vital offsets and host water Mg/Ca is higher, suggesting that ionic composition of water and/or relative abundance of major ions may also control oxygen isotope fractionation in ostracods. Lack of data on host water ionic composition for the different studies precludes more detailed examination at this stage. Further studies such as natural or laboratory cultures done under strictly controlled conditions are needed to better understand the potential influence of varying environmental condi- tions on oxygen isotope compositions of ostracod valves.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

AIM: Specific factors responsible for interindividual variability should be identified and their contribution quantified to improve the usefulness of biological monitoring. Among others, age is an easily identifiable determinant, which could play an important impact on biological variability. MATERIALS AND METHODS: A compartmental toxicokinetic model developed in previous studies for a series of metallic and organic compounds was applied to the description of age differences. Young male physiological and metabolic parameters, based on Reference Man information, were taken from preceding studies and were modified to take into account age based on available information about age differences. RESULTS: Numerical simulation using the kinetic model with the modified parameters indicates in some cases important differences due to age. The expected changes are mostly of the order of 10-20%, but differences up to 50% were observed in some cases. CONCLUSION: These differences appear to depend on the chemical and on the biological entity considered. Further work should be done to improve our estimates of these parameters, by considering for example uncertainty and variability in these parameters. [Authors]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In swarm robotics, communication among the robots is essential. Inspired by biological swarms using pheromones, we propose the use of chemical compounds to realize group foraging behavior in robot swarms. We designed a fully autonomous robot, and then created a swarm using ethanol as the trail pheromone allowing the robots to communicate with one another indirectly via pheromone trails. Our group recruitment and cooperative transport algorithms provide the robots with the required swarm behavior. We conducted both simulations and experiments with real robot swarms, and analyzed the data statistically to investigate any changes caused by pheromone communication in the performance of the swarm in solving foraging recruitment and cooperative transport tasks. The results show that the robots can communicate using pheromone trails, and that the improvement due to pheromone communication may be non-linear, depending on the size of the robot swarm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chemical sensing begins when peripheral receptor proteins recognise specific environmental stimuli and translate them into spatial and temporal patterns of sensory neuron activity. The chemosensory system of the fruit fly, Drosophila melanogaster, has become a dominant model to understand this process, through its accessibility to a powerful combination of molecular, genetic and electrophysiological analysis. Recent results have revealed many surprises in the biology of peripheral chemosensation in Drosophila, including novel structural and signalling properties of the insect odorant receptors (ORs), combinatorial mechanisms of chemical recognition by the gustatory receptors (GRs), and the implication of Transient Receptor Potential (TRP) ion channels as a novel class of chemosensory receptors.