209 resultados para Power regulation
Resumo:
Background and aim: Neuropathic pain (NP) is a frequent and disabling disorder occurring as a consequence of a direct lesion of the nervous system and recurrently associated with a positive shift toward nervous system excitability. Peripheral nerve activity is mainly carried by voltage-gated sodium channels (VGSC), with Nav1.7 isoform being an important candidate since loss of function mutations of its gene is associated with congenital inability to experience pain. Interestingly, ubiquitin ligases from the Nedd4 family are well known proteins that regulate the turnover of many membrane proteins such as VGSC and we showed Nedd2-2 is downregualted in experimental models of chronic pain. The aim of this study was to investigate the importance of Nedd4-2 in the modulation of Nav1.7 at the membrane. Methods: In vitro: whole cell patch clamp on HEK293 cell line stably expressing Nav1.7 was used to record sodium currents (INa), where the peak current of INa reflects the quantity of functional Nav1.7 expressed at the membrane. The possibility that Nedd4-2 modulates the currents was assessed by investigating the effect of its cotransfection on INa. Biotinylation of cell surface was used to isolate membrane-targeted Nav1.7. Furthermore, as the interaction between Nedd4-2 and Nav isoforms was previously reported to rely on an xPPxYx sequence (PY-motif), we mutated this latter to study its impact in the specific interaction between Nav1.7 and Nedd4-2. GST-fusion proteins composed of the Nav1.7 c terminal 66 amino acids (wild-type or PY mutated) and GST were used to pull-down Nedd4-2 from lysates. Results: Co-transfection of Nav1.7 with Nedd4-2 reduced the Nav1.7 current amplitude by ~80% (n = 36, p <0.001), without modifying the biophysical properties of INa. In addition, we show that the quantity of Nav1.7 at the membrane was decreased when Nedd4-2 was present. This effect was dependent on the PY-motif since mutations in this sequence abolished the down-regulatory effect of Nedd4-2. The importance of this motif was further confirmed by pull down experiments since the PY mutant completely eliminate the interaction with Nedd4-2. Perspectives: Altogether, these results point to the importance of Nedd4-2 as a Nav1.7 regulator through cell surface modulation of this sodium channel. Further experiments in freshly dissociated neurons from wild type and Scn1bflox/Nedd4-2Cre mice are needed to confirm in vivo these preliminary data.
Resumo:
Astrocytes play a central role in the brain by regulating glutamate and extracellular potassium concentrations ([K+]0), both released by neurons into the extracellular space during neuronal activity. Glutamate uptake is driven by the inwardly directed sodium gradient across the astrocyte membrane and involves the influx of three sodium ions and one proton and the efflux of one K+ ion per glutamate molecule. The glutamate transport induced rise in intracellular sodium stimulates the Na+/K+-ATPase which leads to significant energetic costs in astrocytes. To evaluate how these two fundamental functions of astrocytes, namely glutamate transport and K+ buffering, which are directly associated with neuronal activity, coexist and if they influence each other, in this thesis work we examined different cellular parameters of astrocytes. We therefore investigated the impact of altered [K+]0 on glutamate transporter activity. To assess this question we measured intracellular sodium fluctuations in mouse primary cultured astrocytes using dynamic fluorescence imaging. We found that glutamate uptake was tightly modulated both in amplitude and kinetics by [K+]0. Elevated [K+]0 strongly decreased glutamate transporter activity, with significant consequences on the cells energy metabolism. To ultimately evaluate potential effects of [K+]0 and glutamate on the astrocyte mitochondrial energy production we extended these studies by investigating their impact on the cytosolic and mitochondrial pH. We found that both [K+],, and glutamate strongly influenced cytosolic and mitochondrial pH, but in opposite directions. The effect of a simultaneous application of K+ and glutamate, however, did not fit with the arithmetical sum of each individual effects, suggesting that an additional non¬linear process is involved. We also investigated the impact of [K+]0 and glutamate transport, respectively, on intracellular potassium concentrations ([K+]0 in cultured astrocytes by characterizing and applying a newly developed Insensitive fluorescent dye. We observed that [K+]i followed [K+]0 changes in a nearly proportional way and that glutamate superfusion caused a reversible, glutamate-concentration dependent drop of [K+],, Our study shows the powerful influence of [K+]u on glutamate capture. These findings have strong implications for our understanding of the tightly regulated interplay between astrocytes and neurons in situations where [K+]0 undergoes large activity-dependent fluctuations. However, depending on the extent of K+ versus glutamate extracellular rise, energy metabolism in astrocytes will be differently regulated. Moreover, the novel insights obtained during this thesis work help understanding some of the underlying processes that prevail in certain pathologies of central nervous system, such as epilepsy and stroke. These results will possibly provide a basis for the development of novel therapeutic strategies. -- Les astrocytes jouent un rôle central dans le cerveau en régulant les concentrations de potassium (K+) et de glutamate, qui sont relâchés par les neurones dans l'espace extracellulaire lorsque ceux- ci sont actifs. La capture par les astrocytes du glutamate est un processus secondairement actif qui implique l'influx d'ions sodium (Na+) et d'un proton, ainsi que l'efflux d'ions K+, ce processus entraîne un coût métabolique important. Nous avons évalué comment ces fonctions fondamentales des astrocytes, la régulation du glutamate et du K+ extracellulaire, qui sont directement associés à l'activité neuronale, coexistent et si elles interagissent, en examinant différents paramètres cellulaires. Dans ce projet de thèse nous avons évalué l'impact des modifications de la concentration de potassium extracellulaire ([K+],,) sur le transport du glutamate. Nous avons mesuré le transport du glutamate par le biais des fluctuations internes de Na+ grâce à un colorant fluorescent en utilisant de l'imagerie à fluorescence dynamique sur des cultures primaires d'astrocytes. Nous avons trouvé que la capture du glutamate était étroitement régulée par [K+]0 aussi bien dans son amplitude que dans sa cinétique. Par la suite, nous avons porté notre attention sur l'impact de [K+]0 et du glutamate sur le pH cytosolique et mitochondrial de l'astrocyte dans le but, in fine, d'évaluer les effets potentiels sur la production d'énergie par la mitochondrie. Nous avons trouvé qu'autant le K+ que le glutamate, de manière individuelle, influençaient fortement le pH, cependant dans des directions opposées. Leurs effets individuels, ne peuvent toutefois pas être additionnés ce qui suggère qu'un processus additionnel non-linéaire est impliqué. En appliquant une nouvelle approche pour suivre et quantifier la concentration intracellulaire de potassium ([K+]0 par imagerie à fluorescence, nous avons observé que [K+]i suivait les changements de [K+]0 de manière quasiment proportionnelle et que la superfusion de glutamate induisait un décroissement rapide et réversible de [K+]i, qui dépend de la concentration de glutamate. Notre étude démontre l'influence de [K+]0 sur la capture du glutamate. Ces résultats permettent d'améliorer notre compréhension de l'interaction entre astrocytes et neurones dans des situations où [K+]0 fluctue en fonction de l'activité neuronale. Cependant, en fonction de l'importance de l'augmentation extracellulaire du K+ versus le glutamate, le métabolisme énergétique des astrocytes va être régulé de manière différente. De plus, les informations nouvelles que nous avons obtenues durant ce travail de thèse nous aident à comprendre quelques- uns des processus sous-jacents qui prévalent dans certaines pathologies du système nerveux central, comme par exemple l'épilepsie ou l'accident vasculaire cérébral. Ces informations pourront être importantes à intégrer dans la cadre du développement de nouvelles stratégies thérapeutiques.
Resumo:
BACKGROUND: The activity of the neuroendocrine reproductive axis is closely related to nutritional status. This link is particularly important in healthy women, in whom insulin is a positive signal for the reproductive system. In contrast, very little is known regarding this relation in men. OBJECTIVES: This study was designed to evaluate the effect of insulin on the reproductive axis of young male volunteers and to study the effect of short-term hypercaloric feeding on this modulation. DESIGN: The activity of the neuroendocrine reproductive axis was characterized by the pattern of endogenous luteinizing hormone (LH) secretion on the basis of frequent blood sampling protocols. The effect of insulin was tested by comparing the LH secretion pattern between a baseline study and a hyperinsulinemic euglycemic clamp. These studies were performed first in subjects fed a controlled isocaloric diet for 6 d (calculated as 1.5 times their resting metabolic rate) then in the same subjects fed a controlled hypercaloric diet in which 30% extra calories were provided as fat and fructose (3 g · kg(-1) · d(-1)) before undergoing identical protocols. Serum gonadotropins, sex steroids, glucose, insulin, ghrelin, and leptin concentrations were assessed, and the HOMA-IR was calculated. RESULTS: The LH secretion pattern was not affected by insulin or by hypercaloric feeding. Insulin decreased ghrelin and increased leptin concentrations but had no additional effect of hypercaloric feeding despite significantly lower HOMA-IR indexes. CONCLUSIONS: Our data indicate that neither insulin nor short-term hypercaloric feeding has any effect on the activity of the male reproductive axis. They also further support the association between ghrelin and insulin and glucose metabolism. This trial was registered at clinicaltrials.gov as NCT01058681.
Resumo:
Micro-RNAs (miRNAs) are key, post-transcriptional regulators of gene expression and have been implicated in almost every cellular process investigated thus far. However, their role in sleep, in particular the homeostatic aspect of sleep control, has received little attention. We here assessed the effects of sleep deprivation on the brain miRNA transcriptome in the mouse. Sleep deprivation affected miRNA expression in a brain-region specific manner. The forebrain expression of the miRNA miR-709 was affected the most and in situ analyses confirmed its robust increase throughout the brain, especially in the cerebral cortex and the hippocampus. The hippocampus was a major target of the sleep deprivation affecting 37 miRNAs compared to 52 in the whole forebrain. Moreover, independent from the sleep deprivation condition, miRNA expression was highly region-specific with 45% of all expressed miRNAs showing higher expression in hippocampus and 55% in cortex. Next we demonstrated that down-regulation of miRNAs in Com/c2o-expressing neurons of adult mice, through a conditional and inducible Dicer knockout mice model (cKO), results in an altered homeostatic response after sleep deprivation eight weeks following the tamoxifen-induced recombination. Dicer cKO mice showed a larger increase in the electro-encephalographic (EEG) marker of sleep pressure, EEG delta power, and a reduced Rapid Eye Movement sleep rebound, compared to controls, highlighting a functional role of miRNAs in sleep homeostasis. Beside a sleep phenotype, Dicer cKO mice developed an unexpected, severe obesity phenotype associated with hyperphagia and altered metabolism. Even more surprisingly, after reaching maximum body weight 5 weeks after tamoxifen injection, obese cKO mice spontaneously started losing weight as rapidly as it was gained. Brain transcriptome analyses in obese mice identified several obesity-related pathways (e.g. leptin, somatostatin, and nemo-like kinase signaling), as well as genes involved in feeding and appetite (e.g. Pmch, Neurotensin). A gene cluster with anti-correlated expression in the cerebral cortex of post-obese compared to obese mice was enriched for synaptic plasticity pathways. While other studies have identified a role for miRNAs in obesity, we here present a unique model that allows for the study of processes involved in reversing obesity. Moreover, our study identified the cortex as a brain area important for body weight homeostasis. Together, these observations strongly suggest a role for miRNAs in the maintenance of homeostatic processes in the mouse, and support the hypothesis of a tight relationship between sleep and metabolism at a molecular - Les micro-ARNS (miARNs) sont des régulateurs post-transcriptionnels de l'expression des gènes, impliqués dans la quasi-totalité des processus cellulaires. Cependant, leur rôle dans la régulation du sommeil, et en particulier dans le maintien de l'homéostasie du sommeil, n'a reçu que très peu d'attention jusqu'à présent. Dans cette étude, nous avons étudié les conséquences d'une privation de sommeil sur l'expression cérébrale des miARNs chez la souris, et observé des changements dans l'expression de nombreux miARNs. Dans le cerveau antérieur, miR-709 est le miARN le plus affecté par la perte de sommeil, en particulier dans le cortex cérébral et l'hippocampe. L'hippocampe est la région la plus touchée avec 37 miARNs changés comparés à 52 dans le cerveau entier. Par ailleurs, indépendamment de la privation de sommeil, certains miARNs sont spécifiquement enrichis dans certaines aires cérébrales, 45% des miARNs étant surexprimés dans l'hippocampe contre 55% dans le cortex. Dans une seconde étude, nous avons observé que la délétion de DICER, enzyme essentielle à la biosynthèse des miARNs, et la perte subséquente des miARNs dans les neurones exprimant la protéine CAMK2a altère la réponse homéostatique à une privation de sommeil, 8 semaines après l'induction de la recombinaison génétique par le tamoxifen. Les souris sans Dicer (cKO) ont une plus large augmentation de l'EEG delta power, le principal marqueur électro-encéphalographique du besoin de sommeil, comparée aux contrôles, ainsi qu'un rebond en sommeil paradoxal plus petit. De façon surprenante, les souris Dicer cKO développent une obésité rapide, sévère et transitoire, associée à de l'hyperphagie et une altération de leur métabolisme énergétique. Après avoir atteint un pic maximal d'obésité, les souris cKO entrent spontanément dans une période de perte de poids rapide. L'analyse du transcriptome cérébral des souris obèses nous a permis d'identifier des voies associées à l'obésité (leptine, somatostatine et nemo-like kinase), et à la prise alimentaire (Pmch, Neurotensin), tandis que celui des souris post-obèses a révélé un groupe de gènes liés à la plasticité synaptique. Au-delà des nombreux modèles d'obésité existant chez la souris, notre étude présente un modèle unique permettant d'étudier les mécanismes sous-jacent la perte de poids. De plus, nous avons mis en évidence un rôle important du cortex cérébral dans le maintien de la balance énergétique. En conclusion, toutes ces observations soutiennent l'idée que les miARNs sont des régulateurs cruciaux dans le maintien des processus homéostatiques et confortent l'hypothèse d'une étroite relation moléculaire entre le sommeil et le métabolisme.
Resumo:
Power is a fundamental force in social relationships and is pervasive throughout various types of interactions. Although research has shown that the possession of power can change the powerholder, the full extent of power's consequences on individuals' decision making capabilities and social interactions within organizations is not fully understood. The goal of this paper is to review, synthesize, and critique the literature on power with a focus on its organizational and managerial implications. Specifically, we propose a definition of power that takes into account its three defining characteristics-having the discretion and means to enforce one's will-and summarize the extant literature on how power influences individuals' thoughts, emotions, and actions both in terms of prosocial and antisocial outcomes. In addition, we highlight important moderators of power and describe ways in which it can be studied in a more rigorous manner by examining methodological issues and pitfalls with regard to its measurement and manipulation. We also provide future research directions to motivate and guide the study of power by management scholars. Our desire is to present a thorough and parsimonious account of power's influence on individuals within an organizational context, as well as provide a foundation that scholars can build upon as they continue to make consequential contributions to the study of power.
Resumo:
Transcorneoscleral iontophoresis was used to enhance ocular penetration of a 21-bp NH(2) protected anti-NOSII oligonucleotides (ODNs) (fluorescein or infrared-41 labeled) in Lewis rats. Both histochemical localization and acrylamide sequencing gels were used. To evaluate the potential to down-regulate NOSII expression in the rat model of endotoxin-induced uveitis (EIU), anti-sense NOSII ODN, scrambled ODN or saline were iontophorezed into these animals' eyes. Iontophoresis facilitated the penetration of intact ODNs into the intraocular tissues of the rat eye and only the eyes receiving ODNs and electrical current demonstrated intact ODNs within the ocular tissues of both segments of the eye. Iontophoresis of anti-NOSII ODN significantly down-regulated the expression of NOSII expression in iris/ciliary body compared to the saline or scrambled ODN treated eyes. Nitrite production was also significantly reduced in the anti-NOSII applied eyes compared to those treated with saline. Using this system, intraocular delivery of ODNs can be significantly enhanced increasing the potential for successful gene therapy for human eye diseases.
Resumo:
(Résumé de l'ouvrage) Originale, insolite, renaissante, l'action religieuse émergente bouscule les habitudes, ébranle les certitudes, construit ici, maintenant, l'autre monde. Peut-on courir le risque? Voilà que la question se pose et se résout en rumeurs publiques, poursuites judiciaires et tensions scolaires, lesquelles mettent à nu des mécanismes inédits d'institutionnalisation de l'expérience religieuse en modernité. As new religious movements seek to carve out their own niche in society, public controversy and opposing beliefs can spark bitter debates, and can even lead to calls for state intervention. How then do new or borderline religious groups negotiate or mediate the building of public space?
Resumo:
Root diseases caused by fungal pathogens can be suppressed by certain rhizobacteria that effectively colonize the roots and produce extracellular antifungal compounds. To be effective, biocontrol bacteria need to be present at sufficiently high cell densities. These conditions favor the operation of positive feedback mechanisms that control the production of antifungal compounds in biocontrol strains of fluorescent pseudomonads, via both transcriptional and post-transcriptional mechanisms.
Resumo:
Canonical Wnt signaling plays a critical role in stem cell maintenance in epithelial homeostasis and carcinogenesis. Here, we show that in the mouse this role is critically mediated by Bcl9/Bcl9l, the mammalian homologues of Legless, which in Drosophila is required for Armadillo/beta-catenin signaling. Conditional ablation of Bcl9/Bcl9l in the intestinal epithelium, where the essential role of Wnt signaling in epithelial homeostasis and stem cell maintenance is well documented, resulted in decreased expression of intestinal stem cell markers and impaired regeneration of ulcerated colon epithelium. Adenocarcinomas with aberrant Wnt signaling arose with similar incidence in wild-type and mutant mice. However, transcriptional profiles were vastly different: Whereas wild-type tumors displayed characteristics of epithelial-mesenchymal transition (EMT) and stem cell-like properties, these properties were largely abrogated in mutant tumors. These findings reveal an essential role for Bcl9/Bcl9l in regulating a subset of Wnt target genes involved in controlling EMT and stem cell-related features and suggest that targeting the Bcl9/Bcl9l arm of Wnt signaling in Wnt-activated cancers might attenuate these traits, which are associated with tumor invasion, metastasis, and resistance to therapy.
Resumo:
ICEclc is a mobile genetic element found in two copies on the chromosome of the bacterium Pseudomonas knackmussii B13. ICEclc harbors genes encoding metabolic pathways for the degradation of chlorocatechols (CLC) and 2-aminophenol (2AP). At low frequencies, ICEclc excises from the chromosome, closes into a circular DNA molecule which can transfer to another bacterium via conjugation. Once in the recipient cell, ICEclc can reintegrate into the chromosome by site-specific recombination. This thesis aimed at identifying the regulatory network underlying the decisions for ICEclc horizontal transfer (HGT). The first chapter is an introduction on integrative and conjugative elements (ICEs) more in general, of which ICEclc is one example. In particular I emphasized the current knowledge of regulation and conjugation machineries of the different classes of ICE. In the second chapter, I describe a transcriptional analysis using microarrays and other experiments to understand expression of ICEclc in exponential and stationary phase. By overlaying transcriptomic profiles with Northern hybridizations and RT- PCR data, we established a transcription map for the entire core region of ICEclc, a region assumed to encode the ICE conjugation process. We also demonstrated how transcription of the ICEclc core is maximal in stationary phase, which correlates to expression of reporter genes fused to key ICEclc promoters. In the third chapter, I present a transcriptome analysis of ICEclc in a variety of different host species, in order to explore whether there are species-specific differences. In the fourth chapter, I focus on the role of a curious ICEclc-encoded TetR-type transcriptional repressor. We find that this gene, which we name mfsR, not only controls its own expression but that of a set of genes for a putative multi-drug efflux pump (mfsABC) as well. By using a combination of biochemical and molecular biology techniques, I could show that MfsR specifically binds to operator boxes in two ICEclc promoters (PmfsR and PmfsA), inhibiting the transcription of both the mfsR and mfsABC-orf38184 operons. Although we could not detect a clear phenotype of an mfsABC deletion, we discuss the implications of pump gene reorganizations in ICEclc and close relatives. In the fifth chapter, we find that mfsR not only controls its own expression and that of the mfsABC operon, but is also indirectly controlling ICEclc transfer. Using gene deletions, microarrays, transfer assays and microscopy-based reporter fusions, we demonstrate that mfsR actually controls a small operon of three regulatory genes. The last gene of this mfsR operon, orf17162, encodes a LysR-type activator that when deleted strongly impairs ICEclc transfer. Interestingly, deletion of mfsR leads to transfer competence in almost all cells, thereby overruling the bistability process in the wild-type. In the final sixth chapter, I discuss the relevance of the present thesis and the resulting perspectives for future studies.
Resumo:
INTRODUCTION: Spectral frequencies of the surface electromyogram (sEMG) increase with contraction force, but debate still exists on whether this increase is affected by various methodological and anatomical factors. This study aimed to investigate the influence of inter-electrode distance (IED) and contraction modality (step-wise vs. ramp) on the changes in spectral frequencies with increasing contraction strength for the vastus lateralis (VL) and vastus medialis (VM) muscles. METHODS: Twenty healthy male volunteers were assessed for isometric sEMG activity of the VM and VL, with the knee at 90° flexion. Subjects performed isometric ramp contractions in knee extension (6-s duration) with the force gradually increasing from 0 to 80 % MVC. Also, subjects performed 4-s step-wise isometric contractions at 10, 20, 30, 40, 50, 60, 70, and 80 % MVC. Interference sEMG signals were recorded simultaneously at different IEDs: 10, 20, 30, and 50 mm. The mean (F mean) and median (F median) frequencies and root mean square (RMS) of sEMG signals were calculated. RESULTS: For all IEDs, contraction modalities, and muscles tested, spectral frequencies increased significantly with increasing level of force up to 50-60 % MVC force. Spectral indexes increased systematically as IED was decreased. The sensitivity of spectral frequencies to changes in contraction force was independent of IED. The behaviour of spectral indexes with increasing contraction force was similar for step-wise and ramp contractions. CONCLUSIONS: In the VL and VM muscles, it is highly unlikely that a particular inter-electrode distance or contraction modality could have prevented the observation of the full extent of the increase in spectral frequencies with increasing force level.
Resumo:
Urinary excretion of water and all major electrolytes exhibit robust circadian oscillations. The 24-h periodicity has been well documented for several important determinants of urine formation, including renal blood flow, glomerular filtration, tubular reabsorption, and tubular secretion. Disturbance of the renal circadian rhythms is increasingly recognized as a risk factor for hypertension, polyuria, and other diseases and may contribute to renal fibrosis. The origin of these rhythms has been attributed to the reactive response of the kidney to circadian changes in volume and/or in the composition of extracellular fluids that are entrained by rest/activity and feeding/fasting cycles. However, numerous studies have shown that most of the renal excretory rhythms persist for long periods of time, even in the absence of periodic environmental cues. These observations led to the hypothesis of the existence of a self-sustained mechanism, enabling the kidney to anticipate various predictable circadian challenges to homeostasis. The molecular basis of this mechanism remained unknown until the recent discovery of the mammalian circadian clock made of a system of autoregulatory transcriptional/translational feedback loops, which have been found in all tissues studied, including the kidney. Here, we present a review of the growing evidence showing the involvement of the molecular clock in the generation of renal excretory rhythms.