111 resultados para Post-translational Processing
Resumo:
Research in autophagy continues to accelerate,(1) and as a result many new scientists are entering the field. Accordingly, it is important to establish a standard set of criteria for monitoring macroautophagy in different organisms. Recent reviews have described the range of assays that have been used for this purpose.(2,3) There are many useful and convenient methods that can be used to monitor macroautophagy in yeast, but relatively few in other model systems, and there is much confusion regarding acceptable methods to measure macroautophagy in higher eukaryotes. A key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers of autophagosomes versus those that measure flux through the autophagy pathway; thus, a block in macroautophagy that results in autophagosome accumulation needs to be differentiated from fully functional autophagy that includes delivery to, and degradation within, lysosomes (in most higher eukaryotes) or the vacuole (in plants and fungi). Here, we present a set of guidelines for the selection and interpretation of the methods that can be used by investigators who are attempting to examine macroautophagy and related processes, as well as by reviewers who need to provide realistic and reasonable critiques of papers that investigate these processes. This set of guidelines is not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to verify an autophagic response.
Resumo:
In yeast, microtubules are dynamic filaments necessary for spindle and nucleus positioning, as well as for proper chromosome segregation. We identify a function for the yeast gene BER1 (Benomyl REsistant 1) in microtubule stability. BER1 belongs to an evolutionary conserved gene family whose founding member Sensitivity to Red light Reduced is involved in red-light perception and circadian rhythms in Arabidopsis. Here, we present data showing that the ber1Delta mutant is affected in microtubule stability, particularly in presence of microtubule-depolymerising drugs. The pattern of synthetic lethal interactions obtained with the ber1Delta mutant suggests that Ber1 may function in N-terminal protein acetylation. Our work thus suggests that microtubule stability might be regulated through this post-translational modification on yet-to-be determined proteins
Resumo:
Abstract : Post-translational modifications such as proteolytic processing, phosphorylation, and glycosylation, add extra layers of complexity to proteomes and allow a finely tuned regulation of the activity of many proteins. The evolutionarily conserved cell-cycle and transcriptional regulator HCP-] is regulated by proteolytic maturation via which a stable heterodirneric complex of two cleaved subunits is formed from a single precursor protein. The human HCF-1 precursor is cleaved at six nearly identical 26 amino acid sequence repeats, called HCF-1pro repeats, which represent uncommon protease recognition sites dedicated to human HCF-1 proteolysis. This proteolytic maturation process is conserved in vertebrate HCF-1 homologues and is essential for the functions of the human protein in cell-cycle regulation; the mechanisms that execute and control HCF-1 proteolysis, however, remain poorly understood. In this dissertation I investigate the mechanisms of proteolytic maturation of HCF-1 proteins in different species. I show that the Drosophila homolog of human HCF-1, called dHCP, is proteolytically cleaved via a different mechanism than human HCF-1. dHCP is processed by the same protease, called Taspase], which cleaves one of the key developmental regulators in flies, the Trithorax protein. Maturation of HCP proteins via Taspase] cleavage is probably not particular to dHCP as many invertebrate HCP proteins, particularly insects and flatworms, possess Taspase] recognition sites. In contrast, the vertebrate HCF-1 proteins lack Taspase] recognition sites and the HCF-1pro repeats are not Taspase1 substrates, suggesting that multiple mechanisms for HCF-1 proteolytic maturation have appeared during evolution. I also show that the proteolytic activity responsible for the cleavage of the HCP- 1pro repeats is very difficult to characterize, being resistant to most protease inhibitors and very sensitive to biochemical fractionation. Moreover, the HCF-1pro repeats represent complex protease recognition sites and I demonstrate that, in addition to be the HCF-1 cleavage sites, these repeated sequences, also recruit the OG1cNAc transferase OGT. The OGT protein and the OG1cNAc modification of HCF-1 are both important for HCF-1pro repeat proteolysis. Interestingly, a human recombinant OGT purified from insect cells is able to induce cleavage of a HCF-1pro-repeat precursor in vitro, indicating that OGT either (i) induces HCF-1 autoproteolysis,(ii) is the HCF-1pro- repeat proteolytic activity itself, or (iii) physically associates with a proteolytic activity that is conserved in insect cells. In any case, OGT plays an important role in HCF-1 proteolytic maturation and perhaps a broader role in HCF-1 biological function. Résumé : Les modifications post-traductionelles pomme le clivage protéolytique, la phosphorylation, et la glycosylation, augmentent significativement la complexité des protéomes et permettent une régulation fine de l'activité de beaucoup de protéines. La protéine HCF-1, qui est un régulateur du cycle cellulaire et de la transcription, est elle- même régulée par clivage protéolytique. La protéine HCF-1 est en effet coupée en deux sous-unités qui s'associent l'une a l'autre pour former la protéine mature. Le précurseur de la protéine HCF-1 humaine est clivé à six sites correspondant à six séquences répétées nommées les HCF-1pro repeats, chacune composée de 26 acide aminés. Les HCF-1pro- repeats ne ressemblent ai aucune séquence de clivage protéolytique connue et sont présentes seulement dans les protéines HCF-1 chez les vertébrés. Bien que la maturation protéolytique d'HCF-1 soit essentielle pour les activités de cette protéine pendant le cycle cellulaire, les mécanismes qui la contrôlent restent inconnus. Au cours de mon travail de thèse, j'ai analysé les mécanismes de clivage protéolytique des protéines HCF dans différentes espèces. J'ai montré que la protéine de Drosophile homologue d'HCF-1 humaine nommée dHCF est clivée par une protéase nommée Taspase1. Ainsi, dHCF est clivé par la même protéase que celle qui induit la maturation protéolytique d'un des principaux facteurs du développement chez la mouche, la protéine Trithorax. La maturation de dHCF via le clivage par la Taspase1 n'est pas spécifique à la mouche, mais est probablement étendu à plusieurs protéines HCF chez les invertébrés, surtout dans les familles des insectes et des plathehninthes, car ces protéines HCF présentent des sites de reconnaissance pour la Taspasel. Par contre, les protéines HCF-1 chez les vertébrés n'ont pas de sites de reconnaissance pour la Taspasel et cela suggère que différents mécanismes de maturation des protéines HCF- ls ont apparu au cours de l'évolution. J'ai montré aussi que les HCF-1pro-repeats sont clivés par une activité protéolytique très difficile a identifier, car elle est résistante à la plupart des inhibiteurs de protéases, mais elle est très sensible au fractionnement biochimique. En plus, les HCF-1pro-repeats sont un site de protéolyse complexe qui ne sert pas seulement au clivage des protéines HCF- chez les vertébrés mais aussi à recruter l'enzyme responsable de la O- GlcNAcylation nommée OGT. La protéine OGT et la O-GlcNAcylatio d'HCF-1 sont toutes les deux importantes pour le clivage protéolytique des HCF1pro-repeats. Curieusement, la protéine OGT humaine produite dans des cellules d'insectes est capable de cliver les HCF-1pro repeats in vitro et cela suggère que OGT soit (i) induit le clivage autocatalytique cl'HCF-1, soit (ii) est elle-même l'activité protéolytique qui clive HCF4, soit (iii) est associée à une activité protéolytique conservée dans les cellules d'insectes qui a été co-purifiée avec OGT. En conclusion, OGT joue un rôle important dans la maturation protéolytique d'HCF-1 et peut-être aussi un rôle plus large dans les fonctions biologiques de la protéine HCF-1.
Resumo:
Genetic recombination can lead to the formation of intermediates in which DNA molecules are linked by Holliday junctions. Movement of a junction along DNA, by a process known as branch migration, leads to heteroduplex formation, whereas resolution of a junction completes the recombination process. Holliday junctions can be resolved in either of two ways, yielding products in which there has, or has not, been an exchange of flanking markers. The ratio of these products is thought to be determined by the frequency with which the two isomeric forms (conformers) of the Holliday junction are cleaved. Recent studies with enzymes that process Holliday junctions in Escherichia coli, the RuvABC proteins, however, indicate that protein binding causes the junction to adopt an open square-planar configuration. Within such a structure, DNA isomerization can have little role in determining the orientation of resolution. To determine the role that junction-specific protein assembly has in determining resolution bias, a defined in vitro system was developed in which we were able to direct the assembly of the RuvABC resolvasome. We found that the bias toward resolution in one orientation or the other was determined simply by the way in which the Ruv proteins were positioned on the junction. Additionally, we provide evidence that supports current models on RuvABC action in which Holliday junction resolution occurs as the resolvasome promotes branch migration.
Resumo:
B-cell-activating factor of the TNF family (BAFF)/BLyS contributes to B-cell homeostasis and function in the periphery. BAFF is expressed as a membrane-bound protein or released by proteolytic cleavage, but the functional importance of this processing event is poorly understood. Mice expressing BAFF with a mutated furin consensus cleavage site, i.e. furin-mutant BAFF (fmBAFF), were not different from BAFF-deficient mice with regard to their B-cell populations and responses to immunization. It is however noteworthy that an alternative processing event releases some soluble BAFF in fmBAFF mice. Mild overexpression (∼ 5-fold) of fmBAFF alone generated intermediate levels of B cells without improving humoral responses to immunization. Processed BAFF was however important for B-cell homeostasis, as peripheral B-cell populations and antibody responses were readily restored by administration of soluble BAFF trimers in BAFF-deficient mice. However, the rescue of CD23 expression in B cells of BAFF-deficient mice required both soluble BAFF trimers and fmBAFF, or a polymeric form of soluble BAFF (BAFF 60-mer). These results point to a predominant role of processed BAFF for B-cell homeostasis and function, and indicate possible accessory roles for membrane-bound BAFF.
Resumo:
Proper division plane positioning is essential to achieve faithful DNA segregation and to control daughter cell size, positioning, or fate within tissues. In Schizosaccharomyces pombe, division plane positioning is controlled positively by export of the division plane positioning factor Mid1/anillin from the nucleus and negatively by the Pom1/DYRK (dual-specificity tyrosine-regulated kinase) gradients emanating from cell tips. Pom1 restricts to the cell middle cortical cytokinetic ring precursor nodes organized by the SAD-like kinase Cdr2 and Mid1/anillin through an unknown mechanism. In this study, we show that Pom1 modulates Cdr2 association with membranes by phosphorylation of a basic region cooperating with the lipid-binding KA-1 domain. Pom1 also inhibits Cdr2 interaction with Mid1, reducing its clustering ability, possibly by down-regulation of Cdr2 kinase activity. We propose that the dual regulation exerted by Pom1 on Cdr2 prevents Cdr2 assembly into stable nodes in the cell tip region where Pom1 concentration is high, which ensures proper positioning of cytokinetic ring precursors at the cell geometrical center and robust and accurate division plane positioning.
Resumo:
The ability to efficiently produce recombinant proteins in a secreted form is highly desirable and cultured mammalian cells such as CHO cells have become the preferred host as they secrete proteins with human-like post-translational modifications. However, attempts to express high levels of particular proteins in CHO cells may consistently result in low yields, even for non-engineered proteins such as immunoglobulins. In this study, we identified the responsible faulty step at the stage of translational arrest, translocation and early processing for such a "difficult-to-express" immunoglobulin, resulting in improper cleavage of the light chain and its precipitation in an insoluble cellular fraction unable to contribute to immunoglobulin assembly. We further show that proper processing and secretion were restored by over-expressing human signal receptor protein SRP14 and other components of the secretion pathway. This allowed the expression of the difficult-to-express protein to high yields, and it also increased the production of an easy-to-express protein. Our results demonstrate that components of the secretory and processing pathways can be limiting, and that engineering of the secretory pathway may be used to improve the secretion efficiency of therapeutic proteins from CHO cells.
Resumo:
Synthetic inhibitor of apoptosis (IAP) antagonists induce degradation of IAP proteins such as cellular IAP1 (cIAP1), activate nuclear factor kappaB (NF-kappaB) signaling, and sensitize cells to tumor necrosis factor alpha (TNFalpha). The physiological relevance of these discoveries to cIAP1 function remains undetermined. We show that upon ligand binding, the TNF superfamily receptor FN14 recruits a cIAP1-Tnf receptor-associated factor 2 (TRAF2) complex. Unlike IAP antagonists that cause rapid proteasomal degradation of cIAP1, signaling by FN14 promotes the lysosomal degradation of cIAP1-TRAF2 in a cIAP1-dependent manner. TNF-like weak inducer of apoptosis (TWEAK)/FN14 signaling nevertheless promotes the same noncanonical NF-kappaB signaling elicited by IAP antagonists and, in sensitive cells, the same autocrine TNFalpha-induced death occurs. TWEAK-induced loss of the cIAP1-TRAF2 complex sensitizes immortalized and minimally passaged tumor cells to TNFalpha-induced death, whereas primary cells remain resistant. Conversely, cIAP1-TRAF2 complex overexpression limits FN14 signaling and protects tumor cells from TWEAK-induced TNFalpha sensitization. Lysosomal degradation of cIAP1-TRAF2 by TWEAK/FN14 therefore critically alters the balance of life/death signals emanating from TNF-R1 in immortalized cells.
Resumo:
Cytosolic acetyl-CoA is involved in the synthesis of a variety of compounds, including waxes, sterols and rubber, and is generated by the ATP citrate lyase (ACL). Plants over-expressing ACL were generated in an effort to understand the contribution of ACL activity to the carbon flux of acetyl-CoA to metabolic pathways occurring in the cytosol. Transgenic Arabidopsis plants synthesizing the polyester polyhydroxybutyrate (PHB) from cytosolic acetyl-CoA have reduced growth and wax content, consistent with a reduction in the availability of cytosolic acetyl-CoA to endogenous pathways. Increasing the ACL activity via the over-expression of the ACLA and ACLB subunits reversed the phenotypes associated with PHB synthesis while maintaining polymer synthesis. PHB production by itself was associated with an increase in ACL activity that occurred in the absence of changes in steady-state mRNA or protein level, indicating a post-translational regulation of ACL activity in response to sink strength. Over-expression of ACL in Arabidopsis was associated with a 30% increase in wax on stems, while over-expression of a chimeric homomeric ACL in the laticifer of roots of dandelion led to a four- and two-fold increase in rubber and triterpene content, respectively. Synthesis of PHB and over-expression of ACL also changed the amount of the cutin monomer octadecadien-1,18-dioic acid, revealing an unsuspected link between cytosolic acetyl-CoA and cutin biosynthesis. Together, these results reveal the complexity of ACL regulation and its central role in influencing the carbon flux to metabolic pathways using cytosolic acetyl-CoA, including wax and polyisoprenoids.
Resumo:
The melanoma-associated protein Melan-A contains the immunodominant CTL epitope Melan-A(26/27-35)/HLA-A*0201 against which a high frequency of T lymphocytes has been detected in many melanoma patients. In this study we show that the in vitro degradation of a polypeptide encompassing Melan-A(26/27-35) by proteasomes produces both the final antigenic peptide and N-terminally extended intermediates. When human melanoma cells expressing the corresponding fragments were exposed to specific CTL, those expressing the minimal antigenic sequence were recognized more efficiently than those expressing the N-terminally extended intermediates. Using a tumor-reactive CTL clone, we confirmed that the recognition of melanoma cells expressing an N-terminally extended intermediate of Melan-A is inefficient. We demonstrated that the inefficient cytosolic trimming of N-terminally extended intermediates could offer a selective advantage for the preferred presentation of Melan-A peptides directly produced by the proteasomes. These results imply that both the proteasomes and postproteasomal peptidases limit the availability of antigenic peptides and that the efficiency of presentation may be affected by conditions that alter the ratio between fully and partially processed proteasomal products.
Resumo:
Phototropism allows plants to redirect their growth towards the light to optimize photosynthesis under reduced light conditions. Phototropin 1 (phot1) is the primary low blue light-sensing receptor triggering phototropism in Arabidopsis. Light-induced autophosphorylation of phot1, an AGC-class protein kinase, constitutes an essential step for phototropism. However, apart from the receptor itself, substrates of phot1 kinase activity are less clearly established. Phototropism is also influenced by the cryptochromes and phytochromes photoreceptors that do not provide directional information but influence the process through incompletely characterized mechanisms. Here, we show that Phytochrome Kinase Substrate 4 (PKS4), a known element of phot1 signalling, is a substrate of phot1 kinase activity in vitro that is phosphorylated in a phot1-dependent manner in vivo. PKS4 phosphorylation is transient and regulated by a type 2-protein phosphatase. Moreover, phytochromes repress the accumulation of the light-induced phosphorylated form of PKS4 showing a convergence of photoreceptor activity on this signalling element. Our physiological analyses suggest that PKS4 phosphorylation is not essential for phototropism but is part of a negative feedback mechanism.
Resumo:
We have characterized the maturation, co- and posttranslational modifications, and functional properties of the alpha(1B)-adrenergic receptor (AR) expressed in different mammalian cells transfected using conventional approaches or the Semliki Forest virus system. We found that the alpha(1B)-AR undergoes N-linked glycosylation as demonstrated by its sensitivity to endoglycosidases and by the effect of tunicamycin on receptor maturation. Pulse-chase labeling experiments in BHK-21 cells demonstrate that the alpha(1B)-AR is synthesized as a 70 kDa core glycosylated precursor that is converted to the 90 kDa mature form of the receptor with a half-time of approximately 2 h. N-Linked glycosylation of the alpha(1B)-AR occurs at four asparagines on the N-terminus of the receptor. Mutations of the N-linked glycosylation sites did not have a significant effect on receptor function or expression. Surprisingly, receptor mutants lacking N-linked glycosylation migrated as heterogeneous bands in SDS-PAGE. Our findings demonstrate that N-linked glycosylation and phosphorylation, but not palmitoylation or O-linked glycosylation, contribute to the structural heterogeneity of the alpha(1B)-AR as it is observed in SDS-PAGE. The modifications found are similar in the different mammalian expression systems explored. Our findings indicate that the Semliki Forest virus system can provide large amounts of functional and fully glycosylated alpha(1B)-AR protein suitable for biochemical and structural studies. The results of this study contribute to elucidate the basic steps involved in the processing of G protein-coupled receptors as well as to optimize strategies for their overexpression.
Resumo:
AIM/HYPOTHESIS: IL-6 induces insulin resistance by activating signal transducer and activator of transcription 3 (STAT3) and upregulating the transcription of its target gene SOCS3. Here we examined whether the peroxisome proliferator-activated receptor (PPAR)β/δ agonist GW501516 prevented activation of the IL-6-STAT3-suppressor of cytokine signalling 3 (SOCS3) pathway and insulin resistance in human hepatic HepG2 cells. METHODS: Studies were conducted with human HepG2 cells and livers from mice null for Pparβ/δ (also known as Ppard) and wild-type mice. RESULTS: GW501516 prevented IL-6-dependent reduction in insulin-stimulated v-akt murine thymoma viral oncogene homologue 1 (AKT) phosphorylation and in IRS-1 and IRS-2 protein levels. In addition, treatment with this drug abolished IL-6-induced STAT3 phosphorylation of Tyr⁷⁰⁵ and Ser⁷²⁷ and prevented the increase in SOCS3 caused by this cytokine. Moreover, GW501516 prevented IL-6-dependent induction of extracellular-related kinase 1/2 (ERK1/2), a serine-threonine protein kinase involved in serine STAT3 phosphorylation; the livers of Pparβ/δ-null mice showed increased Tyr⁷⁰⁵- and Ser⁷²⁷-STAT3 as well as phospho-ERK1/2 levels. Furthermore, drug treatment prevented the IL-6-dependent reduction in phosphorylated AMP-activated protein kinase (AMPK), a kinase reported to inhibit STAT3 phosphorylation on Tyr⁷⁰⁵. In agreement with the recovery in phospho-AMPK levels observed following GW501516 treatment, this drug increased the AMP/ATP ratio and decreased the ATP/ADP ratio. CONCLUSIONS/INTERPRETATION: Overall, our findings show that the PPARβ/δ activator GW501516 prevents IL-6-induced STAT3 activation by inhibiting ERK1/2 phosphorylation and preventing the reduction in phospho-AMPK levels. These effects of GW501516 may contribute to the prevention of cytokine-induced insulin resistance in hepatic cells.
Resumo:
HLA-DR antigens are polymorphic cell surface glycoproteins, expressed primarily in B lymphocytes and macrophages, which are thought to play an important role in the immune response. Two polypeptide chains, alpha and beta, are associated at the cell surface, and a third chain associates with alpha and beta intracellularly. RNA isolated from the human B-cell line Raji was injected in Xenopus laevis oocytes. Immunoprecipitates of translation products with several monoclonal antibodies revealed the presence of HLA-DR antigens similar to those synthesized in Raji cells. One monoclonal antibody was able to bind the beta chain after dissociation of the three polypeptide chains with detergent. The presence of all three chains was confirmed by two-dimensional gel electrophoresis. The glycosylation pattern of the three chains was identical to that observed in vivo, as evidenced in studies using tunicamycin, an inhibitor of N-linked glycosylation. The presence of alpha chains assembled with beta chains in equimolar ratio was further demonstrated by amino-terminal sequencing. An RNA fraction enriched for the three mRNAs, encoding alpha, beta, and intracellular chains, was isolated. This translation-assembly system and the availability of monoclonal antibodies make it possible to assay for mRNA encoding specific molecules among the multiple human Ia-like antigens.
Resumo:
UNLABELLED: Pharmacologically-induced activation of replication competent proviruses from latency in the presence of antiretroviral treatment (ART) has been proposed as a step towards curing HIV-1 infection. However, until now, approaches to reverse HIV-1 latency in humans have yielded mixed results. Here, we report a proof-of-concept phase Ib/IIa trial where 6 aviremic HIV-1 infected adults received intravenous 5 mg/m2 romidepsin (Celgene) once weekly for 3 weeks while maintaining ART. Lymphocyte histone H3 acetylation, a cellular measure of the pharmacodynamic response to romidepsin, increased rapidly (maximum fold range: 3.7-7.7 relative to baseline) within the first hours following each romidepsin administration. Concurrently, HIV-1 transcription quantified as copies of cell-associated un-spliced HIV-1 RNA increased significantly from baseline during treatment (range of fold-increase: 2.4-5.0; p = 0.03). Plasma HIV-1 RNA increased from <20 copies/mL at baseline to readily quantifiable levels at multiple post-infusion time-points in 5 of 6 patients (range 46-103 copies/mL following the second infusion, p = 0.04). Importantly, romidepsin did not decrease the number of HIV-specific T cells or inhibit T cell cytokine production. Adverse events (all grade 1-2) were consistent with the known side effects of romidepsin. In conclusion, romidepsin safely induced HIV-1 transcription resulting in plasma HIV-1 RNA that was readily detected with standard commercial assays demonstrating that significant reversal of HIV-1 latency in vivo is possible without blunting T cell-mediated immune responses. These finding have major implications for future trials aiming to eradicate the HIV-1 reservoir. TRIAL REGISTRATION: clinicaltrials.gov NTC02092116.