71 resultados para Plasmodium coatneyi


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have recently described 95 predicted alpha-helical coiled-coil peptides derived from putative Plasmodium falciparum erythrocytic stage proteins. Seventy peptides recognized with the highest level of prevalence by sera from three endemic areas were selected for further studies. In this study, we sequentially examined antibody responses to these synthetic peptides in two cohorts of children at risk of clinical malaria in Kilifi district in coastal Kenya, in order to characterize the level of peptide recognition by age, and the role of anti-peptide antibodies in protection from clinical malaria. Antibody levels from 268 children in the first cohort (Chonyi) were assayed against 70 peptides. Thirty-nine peptides were selected for further study in a second cohort (Junju). The rationale for the second cohort was to confirm those peptides identified as protective in the first cohort. The Junju cohort comprised of children aged 1-6 years old (inclusive). Children were actively followed up to identify episodes of febrile malaria in both cohorts. Of the 70 peptides examined, 32 showed significantly (p<0.05) increased antibody recognition in older children and 40 showed significantly increased antibody recognition in parasitaemic children. Ten peptides were associated with a significantly reduced odds ratio (OR) for an episode of clinical malaria in the first cohort of children and two of these peptides (LR146 and AS202.11) were associated with a significantly reduced OR in both cohorts. LR146 is derived from hypothetical protein PFB0145c in PlasmoDB. Previous work has identified this protein as a target of antibodies effective in antibody dependent cellular inhibition (ADCI). The current study substantiates further the potential of protein PFB0145c and also identifies protein PF11_0424 as another likely target of protective antibodies against P. falciparum malaria

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Plasmodium and soil transmitted helminth infections (STH) are a major public health problem, particularly among children. There are conflicting findings on potential association between these two parasites. This study investigated the Plasmodium and helminth co-infections among children aged 2 months to 9 years living in Bagamoyo district, coastal region of Tanzania. METHODS: A community-based cross-sectional survey was conducted among 1033 children. Stool, urine and blood samples were examined using a broad set of quality controlled diagnostic methods for common STH (Ascaris lumbricoides, hookworm, Strongyloides stercoralis, Enterobius vermicularis, Trichuris trichura), schistosoma species and Wuchereria bancrofti. Blood slides and malaria rapid diagnostic tests (mRDTs) were utilized for Plasmodium diagnosis. RESULTS: Out of 992 children analyzed, the prevalence of Plasmodium infection was 13% (130/992), helminth 28.5% (283/992); 5% (50/992) had co-infection with Plasmodium and helminth. The prevalence rate of Plasmodium, specific STH and co-infections increased significantly with age (p < 0.001), with older children mostly affected except for S. stercoralis monoinfection and co-infections. Spatial variations of co-infection prevalence were observed between and within villages. There was a trend for STH infections to be associated with Plasmodium infection [OR adjusted for age group 1.4, 95% CI (1.0-2.1)], which was more marked for S. stercoralis (OR = 2.2, 95% CI (1.1-4.3). Age and not schooling were risk factors for Plasmodium and STH co-infection. CONCLUSION: The findings suggest that STH and Plasmodium infections tend to occur in the same children, with increasing prevalence of co-infection with age. This calls for an integrated approach such as using mass chemotherapy with dual effect (e.g., ivermectin) coupled with improved housing, sanitation and hygiene for the control of both parasitic infections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To examine human gene expression during uncomplicated P. falciparum malaria, we obtained three samples (acute illness, treatment, and recovery) from 10 subjects and utilized each subject's recovery sample as their baseline. At the time of acute illness (day 1), subjects had upregulation of innate immune response, cytokine, and inflammation-related genes (IL-1β, IL-6, TNF, and IFN-γ), which was more frequent with parasitemias >100,000 per μL and body temperatures ≥39°C. Apoptosis-related genes (Fas, BAX, and TP53) were upregulated acutely and for several days thereafter (days 1-3). In contrast, the expression of immune-modulatory (transcription factor 7, HLV-DOA, and CD6) and apoptosis inhibitory (c-myc, caspase 8, and Fas Ligand G) genes was downregulated initially and returned to normal with clinical recovery (days 7-10). These results indicate that the innate immune response, cytokine, and apoptosis pathways are upregulated acutely in uncomplicated malaria with concomitant downregulation of immune-modulatory and apoptosis inhibitory genes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Plasmodium falciparum MSP2 is a blood stage protein that is associated with protection against malaria. It was shown that the MSP2 dimorphic (D) and constant (C) regions were well recognized by immune human antibodies, and were characterized by major conserved epitopes in different endemic areas and age groups. These Abs recognized merozoite-derived proteins in WB and IFA. Here, the goal was to determine in mice the immunogenicity of the two allelic MSP2 D and C domains formulated with different adjuvants, for their possible use in future clinical studies. METHOD: Female A/J, C3H, and ICR mice were immunized subcutaneously 3 times at 3-week interval with a mixture of allelic and conserved MSP2 long synthetic peptides formulated with different adjuvants. One week after the third injection, sera from each group were obtained and stored at -20°C for subsequent testing. RESULTS: Both domains of the two MSP2 families are immunogenic and the fine specificity and intensity of the Ab responses are dependent on mouse strains and adjuvants. The major epitopes were restricted to the 20-mer peptide sequences comprising the last 8aa of D and first 12aa of C of the two allelic families and the first 20aa of the C region, this for most strains and adjuvants. Strong immune responses were associated with GLA-SE adjuvant and its combination with other TLR agonists (CpG or GDQ) compared to alhydrogel and Montanide. Further, the elicited Abs were also capable of recognizing Plasmodium-derived MSP2 and inhibiting parasite growth in ADCI. CONCLUSION: The data provide a valuable opportunity to evaluate in mice different adjuvant and antigen formulations of a candidate vaccine containing both MSP2 D and C fragments. The formulations with GLA-SE seem to be a promising option to be compared with the alhydrogel one in human clinical trials.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In 2008, several publications have highlighted the role of climate change and globalization on the epidemiology of infectious diseases. Studies have shown the extension towards Europe of diseases such as Crimea-Congo fever (Kosovo, Turkey and Bulgaria), leismaniosis (Cyprus) and chikungunya virus infection (Italy). The article also contains comments on Plasmodium knowlesi, a newly identified cause of severe malaria in humans, as well as an update on human transmission of the H5NI avian influenza virus. It also mentions new data on Bell's palsy as well as two vaccines (varicella-zoster and pneumococcus), and provides a list of recent guidelines for the treatment of common infectious diseases.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The review covers the development of synthetic peptides as vaccine candidates for Plasmodium falciparum- and Plasmodium vivax-induced malaria from its beginning up to date and the concomitant progress of solid phase peptide synthesis (SPPS) that enables the production of long peptides in a routine fashion. The review also stresses the development of other complementary tools and actions in order to achieve the long sought goal of an efficacious malaria vaccine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To investigate the molecular basis that makes heterodimeric CD8alphabeta a more efficient coreceptor than homodimeric CD8alphaalpha, we used various CD8 transfectants of T1.4 T cell hybridomas, which are specific for H-2Kd, and a photoreactive derivative of the Plasmodium berghei circumsporozoite peptide PbCS 252-260 (SYIPSAEKI). We demonstrate that CD8 is palmitoylated at the cytoplasmic tail of CD8beta and that this allows partitioning of CD8alphabeta, but not of CD8alphaalpha, in lipid rafts. Localization of CD8 in rafts is crucial for its coreceptor function. First, association of CD8 with the src kinase p56lck takes place nearly exclusively in rafts, mainly due to increased concentration of both components in this compartment. Deletion of the cytoplasmic domain of CD8beta abrogated localization of CD8 in rafts and association with p56lck. Second, CD8-mediated cross-linking of p56lck by multimeric Kd-peptide complexes or by anti-CD8 Ab results in p56lck activation in rafts, from which the abundant phosphatase CD45 is excluded. Third, CD8-associated activated p56lck phosphorylates CD3zeta in rafts and hence induces TCR signaling and T cell activation. This study shows that palmitoylation of CD8beta is required for efficient CD8 coreceptor function, mainly because it dramatically increases CD8 association with p56lck and CD8-mediated activation of p56lck in lipid rafts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Exogenously added synthetic peptides can mimic endogenously produced antigenic peptides recognized on target cells by MHC class I-restricted cytolytic T lymphocytes. While it is assumed that exogenous peptides associate with class I molecules on the target cell surface, direct binding of peptides to cell-associated class I molecules has been difficult to demonstrate. Using a newly developed binding assay based on photoaffinity labeling, we have investigated the interaction of two antigenic peptides, known to be recognized in the context of H-2Kd or H-2Db, respectively, with 20 distinct class I alleles on living cells. None of the class I alleles tested, with the exception of H-2Kd or H-2Db, bound either of the peptides, thus demonstrating the exquisite specificity of peptide binding to class I molecules. Moreover, peptide binding to cell-associated H-2Kd was drastically reduced when metabolic energy, de novo protein synthesis or protein egress from the endoplasmic reticulum was inhibited. It is thus likely that exogenously added peptides do not associate with the bulk of class I molecules expressed at the cell surface, but rather bind to short-lived molecules devoid of endogenous peptides.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The class B scavenger receptor CD36 is a component of the pattern recognition receptors on monocytes that recognizes a variety of molecules. CD36 expression in monocytes depends on exposure to soluble mediators. We demonstrate here that CD36 expression is induced in human monocytes following exposure to IL-13, a Th2 cytokine, via the peroxisome proliferator-activated receptor (PPAR)gamma pathway. Induction of CD36 protein was paralleled by an increase in CD36 mRNA. The PPARgamma pathway was demonstrated using transfection of a PPARgamma expression plasmid into the murine macrophage cell line RAW264.7, expressing very low levels of PPARgamma, and in peritoneal macrophages from PPARgamma-conditional null mice. We also show that CD36 induction by IL-13 via PPARgamma is dependent on phospholipase A2 activation and that IL-13 induces the production of endogenous 15-deoxy-Delta12,14-prostaglandin J2, an endogenous PPARgamma ligand, and its nuclear localization in human monocytes. Finally, we demonstrate that CD36 and PPARgamma are involved in IL-13-mediated phagocytosis of Plasmodium falciparum-parasitized erythrocytes. These results reveal a novel role for PPARgamma in the alternative activation of monocytes by IL-13, suggesting that endogenous PPARgamma ligands, produced by phospholipase A2 activation, could contribute to the biochemical and cellular functions of CD36.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vaccines could be a crucial component of efforts to eradicate malaria. Current attempts to develop malaria vaccines are primarily focused on Plasmodium falciparum and are directed towards reducing morbidity and mortality. Continued support for these efforts is essential, but if malaria vaccines are to be used as part of a repertoire of tools for elimination or eradication of malaria, they will need to have an impact on malaria transmission. We introduce the concept of "vaccines that interrupt malaria transmission" (VIMT), which includes not only "classical" transmission-blocking vaccines that target the sexual and mosquito stages but also pre-erythrocytic and asexual stage vaccines that have an effect on transmission. VIMT may also include vaccines that target the vector to disrupt parasite development in the mosquito. Importantly, if eradication is to be achieved, malaria vaccine development efforts will need to target other malaria parasite species, especially Plasmodium vivax, where novel therapeutic vaccines against hypnozoites or preventive vaccines with effect against multiple stages could have enormous impact. A target product profile (TPP) for VIMT is proposed and a research agenda to address current knowledge gaps and develop tools necessary for design and development of VIMT is presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: The link between host MHC (major histocompatibility complex) genotype and malaria is largely based on correlative data with little or no experimental control of potential confounding factors. We used an experimental mouse model to test for main effects of MHC-haplotypes, MHC heterozygosity, and MHC x parasite clone interactions. We experimentally infected MHC-congenic mice (F2 segregants, homo- and heterozygotes, males and females) with one of two clones of Plasmodium chabaudi and recorded disease progression. RESULTS: We found that MHC haplotype and parasite clone each have a significant influence on the course of the disease, but there was no significant host genotype by parasite genotype interaction. We found no evidence for overdominance nor any other sort of heterozygote advantage or disadvantage. CONCLUSION: When tested under experimental conditions, variation in the MHC can significantly influence the course of malaria. However, MHC heterozygote advantage through overdominance or dominance of resistance cannot be assumed in the case of single-strain infections. Future studies might focus on the interaction between MHC heterozygosity and multiple-clone infections.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using a direct binding assay based on photoaffinity labeling, we have studied the interaction of an antigenic peptide with MHC class I molecules and the TCR on living cells. Two photoreactive derivatives of the H-2Kd (Kd) restricted Plasmodium berghei circumsporozoite (PbCS) peptide 253-260 (YIPSAEKI) were used. The first derivative contained an N-terminal photoreactive iodo, 4-azido salicyloyl (IASA) group and biotin on the TCR contact residue Lys259 [IASA-YIPSAEK(biotin)I]. As previously described, this derivative selectively bound to and labeled the Kd molecule. The second photoreactive compound, the isomeric biotin-YIPSAEK(IASA)I, also efficiently bound to the Kd molecule, but failed to label this protein. A CTL clone derived from a mouse immunized with this derivative recognized this conjugate but not the parental P. berghei circumsporozoite peptide or the [IASA-YIPSAEK-(biotin)I] derivative in an Kd-restricted manner. Incubation of the cloned CTL cells with biotin-YIPSAEK(IASA)I, but not its isomer, followed by UV irradiation resulted in photoaffinity labeling of the TCR-alpha chain that was dependent on the conjugate binding to the Kd molecule. The TCR labeling was partially inhibited by anti-LFA 1 and anti-ICAM1 mAb, but was increased by addition of beta 2m or soluble KdQ10. The exquisite labeling selectivity of the two photoprobes opens a new, direct approach to the molecular analysis of antigen presentation and recognition by living CTL.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This report presents a case of acute lung injury developing within hours after administration of mefloquine for a low-level Plasmodium falciparum malaria, which was persistent despite halofantrine therapy. Extensive microbiological investigation remained negative and video-assisted thoracoscopic lung biopsy demonstrated diffuse alveolar damage. The evolution was favourable without treatment. This is the second report of acute lung injury and diffuse alveolar damage caused by mefloquine. Glucose-6-phosphate dehydrogenase deficiency was present in the former case and was thought to contribute to the lung injury. However, glucose-phosphate dehydrogenase was normal in the present case, suggesting that it is not a predisposing condition to the lung injury.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We explored the role of urokinase and tissue-type plasminogen activators (uPA and tPA), as well as the uPA receptor (uPAR; CD87) in mouse severe malaria (SM), using genetically deficient (-/-) mice. The mortality resulting from Plasmodium berghei ANKA infection was delayed in uPA(-/-) and uPAR(-/-) mice but was similar to that of the wild type (+/+) in tPA(-/-) mice. Parasitemia levels were similar in uPA(-/-), uPAR(-/-), and +/+ mice. Production of tumor necrosis factor, as judged from the plasma level and the mRNA levels in brain and lung, was markedly increased by infection in both +/+ and uPAR(-/-) mice. Breakdown of the blood-brain barrier, as evidenced by the leakage of Evans Blue, was similar in +/+ and uPAR(-/-) mice. SM was associated with a profound thrombocytopenia, which was attenuated in uPA(-/-) and uPAR(-/-) mice. Administration of aprotinin, a plasmin antagonist, also delayed mortality and attenuated thrombocytopenia. Platelet trapping in cerebral venules or alveolar capillaries was evident in +/+ mice but absent in uPAR(-/-) mice. In contrast, macrophage sequestration in cerebral venules or alveolar capillaries was evident in both +/+ and uPAR(-/-) mice. Polymorphonuclear leukocyte sequestration in alveolar capillaries was similar in +/+ and uPAR(-/-) mice. These results demonstrate that the uPAR deficiency attenuates the severity of SM, probably by its important role in platelet kinetics and trapping. These results therefore suggest that platelet sequestration contributes to the pathogenesis of SM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Malaria is generally diagnosed by microscopy and rapid antigen testing. Molecular methods become more widely used. In the present study, the contribution of a quantitative multiplex malaria PCR was investigated. We assessed: (i) the agreement between PCR-based identification and microscopy and (ii) the correlation between the parasite load as determined by quantitative PCR and by microscopy. For 83 patients positive by microscopy for Plasmodium spp., the first EDTA-blood sample was tested by multiplex PCR to confirm smear-based species identification. Parasite load was assessed daily using both microscopy and PCR. Among the 83 patients tested, one was positive by microscopy only and 82 were positive by microscopy and PCR. Agreement between microscopy and PCR for the identification at the species level was 89% (73/82). Six of the nine discordant results corresponded to co-infections by two or three species and were attributed to inaccurate morphological identification of mixed cases. The parasite load generally decreased rapidly after treatment had been started, with similar decay curves being obtained using both microscopy and PCR. Our PCR proved especially useful for identifying mixed infections. The quantification obtained by PCR closely correlated with microscopy-based quantification and could be useful for monitoring treatment efficacy, at least in clinical trials.