49 resultados para Plants--Effects of acids on.


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The acute renal tubular effects of two pharmacologically distinct angiotensin II receptor antagonists have been evaluated in normotensive volunteers on various salt diets. In the first study, the renal response to a single oral dose of losartan (100 mg) was assessed in subjects on a low (50 mmol Na/d) and on a high (200 mmol Na/d) salt intake. In a second protocol, the renal effects of 50 mg irbesartan were investigated in subjects receiving a 100 mmol Na/d diet. Both angiotensin II antagonists induced a significant increase in urinary sodium excretion. With losartan, a modest, transient increase in urinary potassium and a significant increase in uric acid excretion were found. In contrast, no change in potassium and uric acid excretions were observed with irbesartan, suggesting that the effects of losartan on potassium and uric acid are due to the intrinsic pharmacologic properties of losartan rather than to the specific blockade of renal angiotensin II receptors. Assessment of segmental sodium reabsorption using lithium as a marker of proximal tubular reabsorption demonstrated a decreased distal reabsorption of sodium with both antagonists. A direct proximal tubular natriuretic effect of the angiotensin II antagonist could be demonstrated only with irbesartan. This apparent discrepancy allowed us to reveal the importance of acute water loading as a possible confounding factor in renal studies. The results of the present analysis show that acute water loading per se may enhance renal sodium excretion and hence modify the level of activity of the renin-angiotensin system expected from a given sodium diet. Since acute water loading is a common practice in clinical renal studies, this confounding factor should be taken into account when investigating the renal effects of vasoactive systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sleep-wake disturbances are frequently observed in stroke patients and are associated with poorer functional outcome. Until now the effects of sleep on stroke evolution are unknown. The purpose of the present study was to evaluate the effects of three sleep deprivation (SD) protocols on brain damages after focal cerebral ischemia in a rat model. Permanent occlusion of distal branches of the middle cerebral artery was induced in adult rats. The animals were then subjected to 6h SD, 12h SD or sleep disturbances (SDis) in which 3 x 12h sleep deprivation were performed by gentle handling. Infarct size and brain swelling were assessed by Cresyl violet staining, and the number of damaged cells was measured by terminal deoxynucleotidyl transferase mediated dUTP nick end labeling (TUNEL) staining. Behavioral tests, namely tape removal and cylinder tests, were performed for assessing sensorimotor function. In the 6h SD protocol, no significant difference (P > 0.05) was found either in infarct size (42.5 ± 30.4 mm3 in sleep deprived animals vs. 44.5 ± 20.5 mm3 in controls, mean ± s.d.), in brain swelling (10.2 ± 3.8 % in sleep deprived animals vs. 11.3 ± 2.0 % in controls) or in number of TUNEL-positive cells (21.7 ± 2.0/mm2 in sleep deprived animals vs. 23.0 ± 1.1/mm2 in controls). In contrast, 12h sleep deprivation increased infarct size by 40 % (82.8 ± 10.9 mm3 in SD group vs. 59.2 ± 13.9 mm3 in control group, P = 0.008) and number of TUNEL-positive cells by 137 % (46.8 ± 15/mm in SD group vs. 19.7 ± 7.7/mm2 in control group, P = 0.003). There was no significant difference (P > 0.05) in brain swelling (12.9 ± 6.3 % in sleep deprived animals vs. 11.6 ± 6.0 % in controls). The SDis protocol also increased infarct size by 76 % (3 x 12h SD 58.8 ± 20.4 mm3 vs. no SD 33.8 ± 6.3 mm3, P = 0.017) and number of TUNEL-positive cells by 219 % (32.9 ± 13.2/mm2 vs. 10.3 ± 2.5/mm2, P = 0.008). Brain swelling did not show any difference between the two groups (24.5 ± 8.4 % in SD group vs. 16.7 ± 8.9 % in control group, p > 0.05). Both behavioral tests did not show any concluding results. In summary, we demonstrate that sleep deprivation aggravates brain damages in a rat model of stroke. Further experiments are needed to unveil the mechanisms underlying these effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Currently, there is an increased interest in γ-hydroxybutyric acid (GHB) and its effects onsleep. This compound, sometimes referred to as 'rape drug', was recently approved as atreatment for the sleep disorder narcolepsy. Although several studies suggest that GHBinduces slow-wave sleep duration and improves sleep quality by increasing EEG slow-waveactivity, others question its ability to induce physiological sleep. GHB's mechanism of actionis still unclear, although in vivo and in vitro it seems to act at high doses as a low-affinityagonist of GABAB receptors. Furthermore, the role GABAB receptors play in sleep and theelectroencephalogram (EEG) is largely unknown.The aim of this project was therefore to investigate the effects of GHB on sleep and EEG, theinvolvement of GABAB receptors in mediating these effects, as well as the intrinsic role ofeach GABAB receptor subunit in the regulation of sleep. Thus, we administered GHB andbaclofen (BAC, a high-affinity agonist at GABAB receptor) to mice lacking the different GABABreceptor subunits and to healthy human volunteers.Our results, both in mice and humans, showed that GHB produced slow waves exclusivelythrough the stimulation of GABAB receptors, but did not induce physiological sleepnecessary to reduce sleep need and to increase cognitive performance. Unlike GHB, BACaffected the homeostatic regulation of sleep (sleep need) and induced a delayedhypersomnia. Finally, GABAB receptor and its subunits seem to play an important role insleep and in particular its circadian distribution.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To evaluate the effects of nutrient intake and vitamin D status on markers of type I collagen formation and degradation in adolescent boys and girls. DESIGN: Cross-sectional study. SETTING: Canton of Vaud, West Switzerland. SUBJECTS: A total of 92 boys and 104 girls, aged 11-16 y. Data were collected on height, weight, pubertal status (self-assessment of Tanner stage), nutrient intake (3-day dietary record) and fasting serum concentration of 25-hydroxyvitamin D (25OHD), and markers of collagen formation (P1NP) and degradation (serum C-terminal telopeptides: S-CTX). RESULTS: Tanner stage was a significant determinant of P1NP in boys and girls and S-CTX in girls. Of the nutrients examined, only the ratio of calcium to phosphorus (Ca/P) was positively associated with P1NP in boys, after adjustment for pubertal status. 25OHD decreased significantly at each Tanner stage in boys. Overall, 15% of boys and 17% of girls were identified as being vitamin D insufficient (serum 25OHD <30 nmol/l), with the highest proportion of insufficiency at Tanner stage 4-5 (29%) in boys and at Tanner stage 3 (24%) in girls. A significant association was not found between 25OHD and either bone turnover marker, nor was 25OHD insufficiency associated with higher concentrations of the bone turnover markers. CONCLUSIONS: The marked effects of puberty on bone metabolism may have obscured any possible effects of diet and vitamin D status on markers of bone metabolism. The mechanistic basis for the positive association between dietary Ca/P ratio and P1NP in boys is not clear and may be attributable to a higher Ca intake per se, a critical balance between Ca and P intake or higher dairy product consumption. A higher incidence of vitamin D insufficiency in older adolescents may reflect a more sedentary lifestyle or increased utilisation of 25OHD, and suggests that further research is needed to define their requirements. SPONSORSHIP: Nestec Ltd and The Swiss Foundation for Research in Osteoporosis.