161 resultados para Phosphorylation sites
Resumo:
To gain insight into the function and regulation of malonyl-CoA decarboxylase (MCD) we have cloned rat MCD cDNA from a differentiated insulin-secreting pancreatic beta-cell-line cDNA library. The full-length cDNA sequence shows 69% identity with the cDNA cloned previously from the goose uropygial gland, and predicts a 492 amino acid protein of 54.7 kDa. The open reading frame contains an N-terminal mitochondrial targeting sequence and the C-terminal part of the enzyme ends with a peroxisomal (Ser-Lys-Leu) targeting motif. Since the sequence does not reveal hydrophobic domains, MCD is most likely expressed in the mitochondrial matrix and inside the peroxisomes. A second methionine residue, located 3' of the mitochondrial presequence, might be the first amino acid of a putative cytosolic MCD, since the nucleotide sequence around it fits fairly well with a consensus Kozak site for translation initiation. However, primer extension detects the presence of only one transcript initiating upstream of the first ATG, indicating that the major, if not exclusive, transcript expressed in the pancreatic beta-cell encodes MCD with its mitochondrial presequence. The sequence also shows multiple possible sites of phosphorylation by casein kinase II and protein kinase C. mRNA tissue-distribution analysis indicates a transcript of 2.2 kb, and that the MCD gene is expressed over a wide range of rat tissues. The distribution of the enzyme shows a broad range of activities from very low in the brain to elevated in the liver and heart. The results provide the foundations for further studies of the role of MCD in lipid metabolism and metabolic signalling in various tissues.
Resumo:
Phosphorylation of a polypeptide of approximately 120 kD in pea (Pisum sativum L.) plasma membranes in response to blue light has been shown to be involved in phototropic curvature, but the relationship of this protein to the kinase and photoreceptor acting upon it is uncertain. Using two-phase aqueous partitioning to isolate right-side-out plasma membrane vesicles, we have obtained evidence suggesting that the photoreceptor, kinase, and substrate are localized to the plasma membrane fraction. Latent phosphorylation accessible through Triton X-100 or freeze/thaw treatments of purified plasma membrane vesicles indicates that at least the kinase moiety is present on the internal face of the plasma membrane. Effects of solubilization of vesicles on fluence-response characteristics and on phosphorylation levels provide evidence that the receptor, kinase, and protein substrate are present together in individual mixed detergent micelles, either as a stable complex or as domains of a single polypeptide. In vivo blue-light irradiation results in a small but significant decrease in mobility of the 120-kD phosphorylated protein on sodium dodecylsulfate gel electrophoresis. This mobility shift is evident on Coomassie-stained gels and on western blots probed with polyclonal antibodies raised against the 120-kD protein. Among the plasma membrane proteins bound to the reactive nucleotide analog fluorosulfonylbenzoyladenine (FSBA), a distinct protein band at 120 kD can be detected on blots probed with anti-FSBA antibodies. This band exhibits an in vivo light-dependent mobility shift identical to that observed for the protein band and antibodies specific for the 120-kD protein, implying that the 120-kD protein has an integral nucleotide binding site and consistent with the possibility that the substrate protein is also a kinase.
Resumo:
We compared the phosphorylation and internalization properties of constitutively active alpha-1b adrenergic receptor (AR) mutants carrying mutations in two distant receptor domains, i.e., at A293 in the distal part of the third intracellular loop and at D142 of the DRY motif lying at the end of the third transmembrane domain. For the A293E and A293I mutants the levels of agonist-independent phosphorylation were 150% and 50% higher than those of the wild-type alpha-1b AR, respectively. On the other hand, for the constitutively active D142A and D142T mutants, the basal levels of phosphorylation were similar to those of the wild-type alpha-1b AR and did not appear to be further stimulated by epinephrine. Overexpression of the guanyl nucleotide binding regulatory protein-coupled receptor kinase GRK2 further increases the basal phosphorylation of the A293E mutant, but not that of D142A mutant. Both the wild-type alpha-1b AR and the A293E mutant could undergo beta-arrestin-mediated internalization. The epinephrine-induced internalization of the constitutively active A293E mutant was significantly higher than that of the wild-type alpha-1b AR. In contrast, the D142A mutant was impaired in its ability to interact with beta-arrestin and to undergo agonist-induced internalization. Interestingly, a double mutant A293E/D142A retained very high constitutive activity and regulatory properties of both the A293E and D142A receptors. These findings demonstrate that two constitutively activating mutations occurring in distant receptor domains of the alpha-1b AR have divergent effects on the regulatory properties of the receptor.
Resumo:
Na,K-ATPase, the main active transport system for monovalent cations in animal cells, is responsible for maintaining Na(+) and K(+) gradients across the plasma membrane. During its transport cycle it binds three cytoplasmic Na(+) ions and releases them on the extracellular side of the membrane, and then binds two extracellular K(+) ions and releases them into the cytoplasm. The fourth, fifth, and sixth transmembrane helices of the alpha subunit of Na,K-ATPase are known to be involved in Na(+) and K(+) binding sites, but the gating mechanisms that control the access of these ions to their binding sites are not yet fully understood. We have focused on the second extracellular loop linking transmembrane segments 3 and 4 and attempted to determine its role in gating. We replaced 13 residues of this loop in the rat alpha1 subunit, from E314 to G326, by cysteine, and then studied the function of these mutants using electrophysiological techniques. We analyzed the results using a structural model obtained by homology with SERCA, and ab initio calculations for the second extracellular loop. Four mutants were markedly modified by the sulfhydryl reagent MTSET, and we investigated them in detail. The substituted cysteines were more readily accessible to MTSET in the E1 conformation for the Y315C, W317C, and I322C mutants. Mutations or derivatization of the substituted cysteines in the second extracellular loop resulted in major increases in the apparent affinity for extracellular K(+), and this was associated with a reduction in the maximum activity. The changes produced by the E314C mutation were reversed by MTSET treatment. In the W317C and I322C mutants, MTSET also induced a moderate shift of the E1/E2 equilibrium towards the E1(Na) conformation under Na/Na exchange conditions. These findings indicate that the second extracellular loop must be functionally linked to the gating mechanism that controls the access of K(+) to its binding site.
Resumo:
Les méthodes de recherche qualitative en psychologie connaissent une diffusion de plus en plus importante, soutenue notamment par le développement phénoménal des réseaux de l'Internet. Nos investigations mettent en lumière diverses catégories de sites liés à la recherche qualitative, pour la plupart issues de grandes institutions nord-américaines. Cependant, la présence d'autant d'informa- tions sur le Web pose la question de la crédibilité des sites disponibles et de leur visibilité : en effet, si une certaine qualité peut être attendue des sites émanant d'institutions officielles, en termes de qualité d'information et de facilité d'accès, en revanche, il s'avère plus difficile d'évaluer certaines pages se réclamant pourtant de la recherche scientifique. Dans cet article, nous présentons quelques sites et liens Internet susceptibles de séduire les chercheurs intéressés par les méthodes qualitatives en psychologie.
Resumo:
Vaccination by the nasal route has been successfully used for the induction of immune responses. Either the nasal-associated lymphoid tissue (NALT), the bronchus-associated lymphoid tissue, or lung dendritic cells have been mainly involved. Following nasal vaccination of mice with human papillomavirus type 16 (HPV16) virus-like-particles (VLPs), we have previously shown that interaction of the antigen with the lower respiratory tract was necessary to induce high titers of neutralizing antibodies in genital secretions. However, following a parenteral priming, nasal vaccination with HPV16 VLPs did not require interaction with the lung to induce a mucosal immune response. To evaluate the contribution of the upper and lower respiratory tissues and associated lymph nodes (LN) in the induction of humoral responses against HPV16 VLPs after nasal vaccination, we localized the immune inductive sites and identified the antigen-presenting cells involved using a specific CD4(+) T-cell hybridoma. Our results show that the trachea, the lung, and the tracheobronchial LN were the major sites responsible for the induction of the immune response against HPV16 VLP, while the NALT only played a minor role. Altogether, our data suggest that vaccination strategies aiming to induce efficient immune responses against HPV16 VLP in the female genital tract should target the lower respiratory tract.
Differential phosphorylation of some proteins of the neuronal cytoskeleton during brain development.
Resumo:
The cytoskeleton is important for neuronal morphogenesis. During the postnatal development of cat brain, the molecular composition of the neuronal cytoskeleton changes with maturation. Several of its proteins change in their rate of expression, in their degree of phosphorylation, in their subcellular distribution, or in their biochemical properties. It is proposed that phosphorylation is an essential mechanism to regulate the plasticity of the early, juvenile-type cytoskeleton. Among such proteins are several microtubule-associated proteins (MAPs), such as MAP5a, MAP2c or the juvenile tau proteins. Phosphorylation may also act on neurofilaments, postulated to be involved in the adult-type stabilization of axons. These observations imply that phosphorylation may affect cytoskeleton function in axons and dendrites at various developmental stages. Yet, the mechanisms of phosphorylation and its regulation cascades are largely unknown. In view of the topic of this issue on CD15, the potential role of matrix molecules being involved in the modulation of phosphorylation activity and of cytoskeletal properties is addressed.
Resumo:
1. The neuronal cytoskeletal protein tau and the carboxy tails of cytoskeletal proteins neurofilament-M (NF-M) and neurofilament-H (NF-H) are phosphorylated on serine residues by the cyclin-dependent kinase cdk-5. 2. In aggregating neuronal-glial cultures we show that veratridine-mediated cation influx causes dephosphorylation of tau, NF-M and NF-H. Dephosphorylation was blocked specifically by cyclosporine A but not by okadiac acid at concentrations up to 200 nM. 3. These results suggest that veratridine-triggered cation influx causes activation of PP-2B (calcineurin) leading to dephosphorylation of these cytoskeletal proteins.
Resumo:
Neurofilament (NF) proteins consist of three subunits of different molecular weights defined as NF-H, NF-M, and NF-L. They are typical structures of the neuronal cytoskeleton. Their immunocytochemical distribution during postnatal development of cat cerebellum was studied with several monoclonal and polyclonal antibodies against phosphorylated or unmodified sites. Expression and distribution of the triplet neurofilament proteins changed with maturation. Afferent mossy and climbing fibers in the medullary layer contained NF-M and NF-L already at birth, whereas NF-H appeared later. Within the first three postnatal weeks, all three subunits appeared in mossy and climbing fibers in the internal granular and molecular layers and in the axons of Purkinje cells. Axons of local circuit neurons such as basket cells expressed these proteins at the end of the first month, whereas parallel fibers expressed them last, at the beginning of the third postnatal month. Differential localization was especially observed for NF-H. Depending on phosphorylation, NF-H proteins were found in different axon types in climbing, mossy, and basket fibers or additionally in parallel fibers. A nonphosphorylated NF-H subunit was exclusively located in some Purkinje cells at early developmental stages and in some smaller interneurons later. A novel finding is the presence of a phosphorylation site in the NF-H subunit that is localized in dendrites of Purkinje cells but not in axons. Expression and phosphorylation of the NF-H subunit, especially, is cell-type specific and possibly involved in the adult-type stabilization of the axonal and dendritic cytoskeleton.
Resumo:
The photoreceptor phytochrome B (phyB) interconverts between the biologically active Pfr (λmax = 730 nm) and inactive Pr (λmax = 660 nm) forms in a red/far-red-dependent fashion and regulates, as molecular switch, many aspects of light-dependent development in Arabidopsis thaliana. phyB signaling is launched by the biologically active Pfr conformer and mediated by specific protein-protein interactions between phyB Pfr and its downstream regulatory partners, whereas conversion of Pfr to Pr terminates signaling. Here, we provide evidence that phyB is phosphorylated in planta at Ser-86 located in the N-terminal domain of the photoreceptor. Analysis of phyB-9 transgenic plants expressing phospho-mimic and nonphosphorylatable phyB-yellow fluorescent protein (YFP) fusions demonstrated that phosphorylation of Ser-86 negatively regulates all physiological responses tested. The Ser86Asp and Ser86Ala substitutions do not affect stability, photoconversion, and spectral properties of the photoreceptor, but light-independent relaxation of the phyB(Ser86Asp) Pfr into Pr, also termed dark reversion, is strongly enhanced both in vivo and in vitro. Faster dark reversion attenuates red light-induced nuclear import and interaction of phyB(Ser86Asp)-YFP Pfr with the negative regulator PHYTOCHROME INTERACTING FACTOR3 compared with phyB-green fluorescent protein. These data suggest that accelerated inactivation of the photoreceptor phyB via phosphorylation of Ser-86 represents a new paradigm for modulating phytochrome-controlled signaling.