77 resultados para PZT patches


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Human colon carcinoma Caco-2 cell monolayers undergo conversion into cells that share morphological and functional features of M cells when allowed to interact with B lymphocytes. A lymphotropic (X4) HIV-1 strain crosses M cell monolayers and infects underlying CD4(+) target cells. Transport requires both lactosyl cerebroside and CXCR4 receptors, which are expressed on the apical surface of Caco-2 and M cells. Antibodies specific for each receptor block transport. In contrast, a monotropic (R5) HIV-1 strain is unable to cross M cell monolayers and infect underlying monocytes, despite efficient transport of latex beads. Caco-2 and M cells do not express CCR5, but transfection of these cells with CCR5 cDNA restores transport of R5 virus, which demonstrates that HIV-1 transport across M cells is receptor-mediated. The follicle-associated epithelium covering human gut lymphoid follicles expresses CCR5, but not CXCR4, and lactosyl cerebroside, suggesting that HIV-1 infection may occur through M cells and enterocytes at these sites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The effects of patch size and isolation on metapopulation dynamics have received wide empirical support and theoretical formalization. By contrast, the effects of patch quality seem largely underinvestigated, partly due to technical difficulties in properly assessing quality. Here we combine habitat-quality modeling with four years of demographic monitoring in a metapopulation of greater white-toothed shrews (Crocidura russula) to investigate the role of patch quality on metapopulation processes. Together, local patch quality and connectivity significantly enhanced local population sizes and occupancy rates (R2 = 14% and 19%, respectively). Accounting for the quality of patches connected to the focal one and acting as potential sources improved slightly the model explanatory power for local population sizes, pointing to significant source-sink dynamics. Local habitat quality, in interaction with connectivity, also increased colonization rate (R2 = 28%), suggesting the ability of immigrants to target high-quality patches. Overall, patterns were best explained when assuming a mean dispersal distance of 800 m, a realistic value for the species under study. Our results thus provide evidence that patch quality, in interaction with connectivity, may affect major demographic processes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Segmenting ultrasound images is a challenging problemwhere standard unsupervised segmentation methods such asthe well-known Chan-Vese method fail. We propose in thispaper an efficient segmentation method for this class ofimages. Our proposed algorithm is based on asemi-supervised approach (user labels) and the use ofimage patches as data features. We also consider thePearson distance between patches, which has been shown tobe robust w.r.t speckle noise present in ultrasoundimages. Our results on phantom and clinical data show avery high similarity agreement with the ground truthprovided by a medical expert.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pollution of air, water and soil by industrial chemicals presents a potential health risk to humans. Such chemicals can enter the human body by three routes, namely by inhalation, dermal absorption, and ingestion and in special cases by injection (needle sticks, bites, cuts, etc.). In the workplace, pulmonary and dermal absorption are the main routes of entry, but poor personal hygiene and work habits can result in ingestion that contributes to the dose. Air monitoring provides reliable information on inhalation exposure, and patches can be used to estimate dermal exposure. Local adverse effects, such as skin and eye irritation, or nose and lung irritation, are closely related to the external exposure. Systemic adverse effects, on the other hand, are related to the absorbed amount (dose), or to the level of the pollutant or its metabolite in the target organ. Human biological monitoring is becoming a powerful tool for scientists and policy makers to assess and manage the risk of exposure to chemicals both in the general population and at the workpalce. This chapter will focus on the occupational environment keeping in mind that biological monitoring in humans is a very actual issue in public health politics, in environmental medicine, and in science in general.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bacterial degradation of polycyclic aromatic hydrocarbons (PAHs), ubiquitous contaminants from oil and coal, is typically limited by poor accessibility of the contaminant to the bacteria. In order to measure PAH availability in complex systems, we designed a number of diffusion-based assays with a double-tagged bacterial reporter strain Burkholderia sartisoli RP037-mChe. The reporter strain is capable of mineralizing phenanthrene (PHE) and induces the expression of enhanced green fluorescent protein (eGFP) as a function of the PAH flux to the cell. At the same time, it produces a second autofluorescent protein (mCherry) in constitutive manner. Quantitative epifluorescence imaging was deployed in order to record reporter signals as a function of PAH availability. The reporter strain expressed eGFP proportionally to dosages of naphthalene or PHE in batch liquid cultures. To detect PAH diffusion from solid materials the reporter cells were embedded in 2 cm-sized agarose gel patches, and fluorescence was recorded over time for both markers as a function of distance to the PAH source. eGFP fluorescence gradients measured on known amounts of naphthalene or PHE served as calibration for quantifying PAH availability from contaminated soils. To detect reporter gene expression at even smaller diffusion distances, we mixed and immobilized cells with contaminated soils in an agarose gel. eGFP fluorescence measurements confirmed gel patch diffusion results that exposure to 2-3 mg lampblack soil gave four times higher expression than to material contaminated with 10 or 1 (mg PHE) g(-1).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Disturbances affect metapopulations directly through reductions in population size and indirectly through habitat modification. We consider how metapopulation persistence is affected by different disturbance regimes and the way in which disturbances spread, when metapopulations are compact or elongated, using a stochastic spatially explicit model which includes metapopulation and habitat dynamics. We discover that the risk of population extinction is larger for spatially aggregated disturbances than for spatially random disturbances. By changing the spatial configuration of the patches in the system--leading to different proportions of edge and interior patches--we demonstrate that the probability of metapopulation extinction is smaller when the metapopulation is more compact. Both of these results become more pronounced when colonization connectivity decreases. Our results have important management implication as edge patches, which are invariably considered to be less important, may play an important role as disturbance refugia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many mucosal pathogens invade the host by initially infecting the organized mucosa-associated lymphoid tissue (o-MALT) such as Peyer's patches or nasal cavity-associated lymphoid tissue (NALT) before spreading systemically. There is no clear demonstration that serum antibodies can prevent infections in o-MALT. We have tested this possibility by using the mouse mammary tumor virus (MMTV) as a model system. In peripheral lymph nodes or in Peyer's patches or NALT, MMTV initially infects B lymphocytes, which as a consequence express a superantigen (SAg) activity. The SAg molecule induces the local activation of a subset of T cells within 6 days after MMTV infection. We report that similar levels of anti-SAg antibody (immunoglobulin G) in serum were potent inhibitors of the SAg-induced T-cell response both in peripheral lymph nodes and in Peyer's patches or NALT. This result clearly demonstrates that systemic antibodies can gain access to Peyer's patches or NALT.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We describe a patient with interstitial granuloma annulare associated with subcutaneous injection therapy (SIT) for desensitization to a type I allergy. Asymptomatic, erythematous, violaceous annular patches were located at the injection sites on both her arms. Medical history revealed perennial rhinoconjonctivitis treated with SIT (Phostal Stallergen® cat 100% and D. pteronyssinus/D.farinae 50%:50%).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cortical folding (gyrification) is determined during the first months of life, so that adverse events occurring during this period leave traces that will be identifiable at any age. As recently reviewed by Mangin and colleagues(2), several methods exist to quantify different characteristics of gyrification. For instance, sulcal morphometry can be used to measure shape descriptors such as the depth, length or indices of inter-hemispheric asymmetry(3). These geometrical properties have the advantage of being easy to interpret. However, sulcal morphometry tightly relies on the accurate identification of a given set of sulci and hence provides a fragmented description of gyrification. A more fine-grained quantification of gyrification can be achieved with curvature-based measurements, where smoothed absolute mean curvature is typically computed at thousands of points over the cortical surface(4). The curvature is however not straightforward to comprehend, as it remains unclear if there is any direct relationship between the curvedness and a biologically meaningful correlate such as cortical volume or surface. To address the diverse issues raised by the measurement of cortical folding, we previously developed an algorithm to quantify local gyrification with an exquisite spatial resolution and of simple interpretation. Our method is inspired of the Gyrification Index(5), a method originally used in comparative neuroanatomy to evaluate the cortical folding differences across species. In our implementation, which we name local Gyrification Index (lGI(1)), we measure the amount of cortex buried within the sulcal folds as compared with the amount of visible cortex in circular regions of interest. Given that the cortex grows primarily through radial expansion(6), our method was specifically designed to identify early defects of cortical development. In this article, we detail the computation of local Gyrification Index, which is now freely distributed as a part of the FreeSurfer Software (http://surfer.nmr.mgh.harvard.edu/, Martinos Center for Biomedical Imaging, Massachusetts General Hospital). FreeSurfer provides a set of automated reconstruction tools of the brain's cortical surface from structural MRI data. The cortical surface extracted in the native space of the images with sub-millimeter accuracy is then further used for the creation of an outer surface, which will serve as a basis for the lGI calculation. A circular region of interest is then delineated on the outer surface, and its corresponding region of interest on the cortical surface is identified using a matching algorithm as described in our validation study(1). This process is repeatedly iterated with largely overlapping regions of interest, resulting in cortical maps of gyrification for subsequent statistical comparisons (Fig. 1). Of note, another measurement of local gyrification with a similar inspiration was proposed by Toro and colleagues(7), where the folding index at each point is computed as the ratio of the cortical area contained in a sphere divided by the area of a disc with the same radius. The two implementations differ in that the one by Toro et al. is based on Euclidian distances and thus considers discontinuous patches of cortical area, whereas ours uses a strict geodesic algorithm and include only the continuous patch of cortical area opening at the brain surface in a circular region of interest.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Previous studies showed a fetal sheep liver extract (FSLE), in association with LPS, injected into aged (>20 months) mice reversed the altered polarization (increased IL-4 and IL-10 with decreased IL-2 and IFN-gamma) in cytokine production seen from ConA stimulated lymphoid cells of those mice. Aged mice show a >60% decline in numbers and suppressive function of both CD4(+)CD25(+)Foxp3(+)Treg and so-called Tr3 (CD4(+)TGFbeta(+)). Their number/function is restored to levels seen in control (8-week-old) mice by FSLE. We have reported at length on the ability of a novel pair of immunoregulatory molecules, members of the TREM family, namely CD200:CD200R, to control development of dendritic cells (DCs) which themselves regulate production of Foxp3(+) Treg. The latter express a distinct subset of TLRs which control their function. We report that a feature of the altered Treg expression following combined treatment with FSLE and monophosphoryl lipid A, MPLA (a bioactive component of lipid A of LPS) is the altered gene expression both of distinct subsets of TLRs and of CD200Rs. We speculate that this may represent one of the mechanisms by which FSLE and MPLA alter immunity in aged mice.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Misfolded polypeptide monomers may be regarded as the initial species of many protein aggregation pathways, which could accordingly serve as primary targets for molecular chaperones. It is therefore of paramount importance to study the cellular mechanisms that can prevent misfolded monomers from entering the toxic aggregation pathway and moreover rehabilitate them into active proteins. Here, we produced two stable misfolded monomers of luciferase and rhodanese, which we found to be differently processed by the Hsp70 chaperone machinery and whose conformational properties were investigated by biophysical approaches. In spite of their monomeric nature, they displayed enhanced thioflavin T fluorescence, non-native β-sheets, and tertiary structures with surface-accessible hydrophobic patches, but differed in their conformational stability and aggregation propensity. Interestingly, minor structural differences between the two misfolded species could account for their markedly different behavior in chaperone-mediated unfolding/refolding assays. Indeed, only a single DnaK molecule was sufficient to unfold by direct clamping a misfolded luciferase monomer, while, by contrast, several DnaK molecules were necessary to unfold the more resistant misfolded rhodanese monomer by a combination of direct clamping and cooperative entropic pulling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Question: How do clonal traits of a locally dominant grass (Elymus repens (L.) Gould.) respond to soil heterogeneity and shape spatial patterns of its tillers? How do tiller spatial patterns constrain seedling recruitment within the community?Locations: Artificial banks of the River Rhone, France.Material and Methods: We examined 45 vegetation patches dominated by Elymus repens. During a first phase we tested relationships between soil variables and three clonal traits (spacer length, number of clumping tillers and branching rate), and between the same clonal traits and spatial patterns (i.e. density and degree of spatial aggregation) of tillers at a very fine scale. During a second phase, we performed a sowing experiment to investigate effects of density and spatial patterns of E. repens on recruitment of eight species selected from the regional species pool.Results: Clonal traits had clear effects - especially spacer length - on densification and aggregation of E. repens tillers and, at the same time, a clear response of these same clonal traits as soil granulometry changed. The density and degree of aggregation of E. repens tillers was positively correlated to total seedling cover and diversity at the finest spatial scales.Conclusions: Spatial patterning of a dominant perennial grass responds to soil heterogeneity through modifications of its clonal morphology as a trade-off between phalanx and guerrilla forms. In turn, spatial patterns have strong effects on abundance and diversity of seedlings. Spatial patterns of tillers most probably led to formation of endogenous gaps in which the recruitment of new plant individuals was enhanced. Interestingly, we also observed more idiosyncratic effects of tiller spatial patterns on seedling cover and diversity when focusing on different growth forms of the sown species.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Summary Secondary lymphoid organs (SLOB), such as lymph nodes and spleen, are the sites where primary immune responses are initiated. T lymphocytes patrol through the blood and SLOs on the search for pathogens which are presented to them as antigens by dendritic cells. Stromal cells in the Tzone - so called T zone fibroblastic reticular cells (TRCs) -are critical in organizing the migration of T cells and dendritic cells by producing the chemoattractants CCL19 and CCL21 and by forming a network which T cells use as a guidance system. They also form a system of small channels or conduits that allow rapid transport of small antigen molecules or cytokines from the subcapsular sinus to high endothelial venules. The phenotype and function of TRCs have otherwise remained largely unknown. We found a critical role for lymph node access in CD4+ and CD8+ T cell homeostasis and identified TRCs within these organs as the major source of interleukin-7 (IL-7). IL-7 is an essential survival factor for naïve T lymphocytes of which the cellular source in the periphery had been poorly defined. In vitro, TRC were able to prevent the death of naïve T but not of B lymphocytes by secreting IL-7 and the CCR7 ligand CCL 19. Using gene-targeted mice, we show anon-redundant function of CCL19 in T cell homeostasis. The data suggest that TRCs regulate T cell numbers by providing a limited reservoir of survival factors for which T cells have to compete. They help to maintain a diverse T cell repertoire granting full immunocompetence. To determine whether TRCs also play a role in pathology, we characterized so-called tertiary lymphoid organs (TLOs) that often develop at sites of chronic inflammation. We show that TLOs resemble lymph nodes or Peyer's patches not only with regard to lymphoid cells. TLOs formed extensive TRC networks and a functional conduit system in all three marine inflammation models tested. In one model we dissected the cells and signals leading to the formation of these structures. We showed that they critically depend on the presence of lymphotoxin and lymphoid tissue inducer cells. TRCs in TLOs also produce CCL19, GCL21 and possibly IL-7 which are all involved in the development of TLOs. Stromal cells therefore play a central role in the onset and perpetuation of chronic inflammatory diseases and could be an interesting target for therapy. Résumé Le système immunitaire est la défense de notre corps contre toutes sortes d'infections et de tumeurs. II est constitué de différentes populations de lymphocytes qui patrouillent constamment le corps à la recherche de pathogène. Parmi eux, les lymphocytes T et B passent régulièrement dans les organes lymphoïdes secondaires (SLO) qui sont les sites d'initiation de la réponse immunitaire. Les lymphocytes T sont recrutés du sang aux SLO où ils cherchent leur antigène respectif présenté par des cellules dendritiques. Des cellules stromales dans la zone T -nommées fibroblastic reticular cells' (TRC) -sécrètent des chimiokines CCL19 et CCL21 et ainsi facilitent les rencontres entre lymphocytes T et cellules dendritiques. De plus, elles forment un réseau que les lymphocytes T utilisent comme système de guidage. Ce réseau forme des petits canaux (ou conduits) qui permettent le transport rapide, d'antigène soluble ou de cytokines, de la lymphe aux veinules à endothelium épais (HEV). Le phénotype ainsi que les autres fonctions des TRCs demeurent encore à ce jour inconnus. Nous avons trouvé que l'accès des lymphocytes T CD4+ et CD8+ aux ganglions joue un rôle central pour l'homéostasie. Interleukin-7 (IL-7) est un facteur de survie essentiel pour les lymphocytes T naïfs dont la source cellulaire dans la périphérie était mal définie. Nous avons identifié les TRCs dans les ganglions comme source principale d'interleukin-7 (IL-7). In vitro, les TRCs étaient capable de prévenir la mort des lymphocytes T mais pas celle de lymphocytes B grâce à la sécrétion d'IL-7 et de CCL19. En utilisant des souris déficientes du gène CCL19, nous avons observé que l'homéostasie des lymphocytes T dépend aussi de CCL19 in vivo. Les données suggèrent que les TRCs aident à maintenir un répertoire large et diversifié de cellules T et ainsi l'immunocompétence. Pour déterminer si les TRCs pourraient jouer un rote également dans la pathologie, nous avons caractérisé des organes lymphoïdes tertiaires (TLOs) souvent associés avec l'inflammation chronique. Les TLOs ressemblent à des ganglions ou des plaques de Peyer pas seulement en ce qui concerne la présence de lymphocytes. Nous avons constaté que les TLOs forment des réseaux de TRC et un système fonctionnel de conduits. La formation de ces structures est fortement diminuée dans l'absence du signal lymphotoxin ou des cellules connues comme ymphoid tissue-inducer tells: Les TRCs dans les TLOs produisent les chimiokines CCL19, CCL21 et possiblement aussi IL-7 qui sont impliquées dans le développement des TLOs. Les cellules stromales jouent donc un rôle central dans l'initation et la perpétuation des maladies inflamatoires chroniques et pourraient être une cible intéressante pour la thérapie.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In intestinal secretions, secretory IgA (SIgA) plays an important sentinel and protective role in the recognition and clearance of enteric pathogens. In addition to serving as a first line of defense, SIgA and SIgA x antigen immune complexes are selectively transported across Peyer's patches to underlying dendritic cells in the mucosa-associated lymphoid tissue, contributing to immune surveillance and immunomodulation. To explain the unexpected transport of immune complexes in face of the large excess of free SIgA in secretions, we postulated that SIgA experiences structural modifications upon antigen binding. To address this issue, we associated specific polymeric IgA and SIgA with antigens of various sizes and complexity (protein toxin, virus, bacterium). Compared with free antibody, we found modified sensitivity of the three antigens assayed after exposure to proteases from intestinal washes. Antigen binding further impacted on the immunoreactivity toward polyclonal antisera specific for the heavy and light chains of the antibody, as a function of the antigen size. These conformational changes promoted binding of the SIgA-based immune complex compared with the free antibody to cellular receptors (Fc alphaRI and polymeric immunoglobulin receptor) expressed on the surface of premyelocytic and epithelial cell lines. These data reveal that antigen recognition by SIgA triggers structural changes that confer to the antibody enhanced receptor binding properties. This identifies immune complexes as particular structural entities integrating the presence of bound antigens and adds to the known function of immune exclusion and mucus anchoring by SIgA.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Connectivity among demes in a metapopulation depends on both the landscape's and the focal organism's properties (including its mobility and cognitive abilities). Using individual-based simulations, we contrast the consequences of three different cognitive strategies on several measures of metapopulation connectivity. Model animals search suitable habitat patches while dispersing through a model landscape made of cells varying in size, shape, attractiveness and friction. In the blind strategy, the next cell is chosen randomly among the adjacent ones. In the near-sighted strategy, the choice depends on the relative attractiveness of these adjacent cells. In the far-sighted strategy, animals may additionally target suitable patches that appear within their perceptual range. Simulations show that the blind strategy provides the best overall connectivity, and results in balanced dispersal. The near-sighted strategy traps animals into corridors that reduce the number of potential targets, thereby fragmenting metapopulations in several local clusters of demes, and inducing sink-source dynamics. This sort of local trapping is somewhat prevented in the far-sighted strategy. The colonization success of strategies depends highly on initial energy reserves: blind does best when energy is high, near-sighted wins at intermediate levels, and far-sighted outcompetes its rivals at low energy reserves. We also expect strong effects in terms of metapopulation genetics: the blind strategy generates a migrant-pool mode of dispersal that should erase local structures. By contrast, near- and far-sighted strategies generate a propagule-pool mode of dispersal and source-sink behavior that should boost structures (high genetic variance among- and low variance within local clusters of demes), particularly if metapopulation dynamics is also affected by extinction-colonization processes. Our results thus point to important effects of the cognitive ability of dispersers on the connectivity, dynamics and genetics of metapopulations.