118 resultados para POTENT CYTOSTATIC ACTIVITIES
Resumo:
We investigated the activities of fluconazole, caspofungin, anidulafungin, and amphotericin B against Candida species in planktonic form and biofilms using a highly sensitive assay measuring growth-related heat production (microcalorimetry). C. albicans, C. glabrata, C. krusei, and C. parapsilosis were tested, and MICs were determined by the broth microdilution method. The antifungal activities were determined by isothermal microcalorimetry at 37°C in RPMI 1640. For planktonic Candida, heat flow was measured in the presence of antifungal dilutions for 24 h. Candida biofilm was formed on porous glass beads for 24 h and exposed to serial dilutions of antifungals for 24 h, and heat flow was measured for 48 h. The minimum heat inhibitory concentration (MHIC) was defined as the lowest antifungal concentration reducing the heat flow peak by ≥50% (≥90% for amphotericin B) at 24 h for planktonic Candida and at 48 h for Candida biofilms (measured also at 24 h). Fluconazole (planktonic MHICs, 0.25 to >512 μg/ml) and amphotericin B (planktonic MHICs, 0.25 to 1 μg/ml) showed higher MHICs than anidulafungin (planktonic MHICs, 0.015 to 0.5 μg/ml) and caspofungin (planktonic MHICs, 0.125 to 0.5 μg/ml). Against Candida species in biofilms, fluconazole's activity was reduced by >1,000-fold compared to its activity against the planktonic counterparts, whereas echinocandins and amphotericin B mainly preserved their activities. Fluconazole induced growth of planktonic C. krusei at sub-MICs. At high concentrations of caspofungin (>4 μg/ml), paradoxical growth of planktonic C. albicans and C. glabrata was observed. Microcalorimetry enabled real-time evaluation of antifungal activities against planktonic and biofilm Candida organisms. It can be used in the future to evaluate new antifungals and antifungal combinations and to study resistant strains.
Resumo:
In neurons, the regulation of microtubules plays an important role for neurite outgrowth, axonal elongation, and growth cone steering. SCG10 family proteins are the only known neuronal proteins that have a strong destabilizing effect, are highly enriched in growth cones and are thought to play an important role during axonal elongation. MAP1B, a microtubule-stabilizing protein, is found in growth cones as well, therefore it was important to test their effect on microtubules in the presence of both proteins. We used recombinant proteins in microtubule assembly assays and in transfected COS-7 cells to analyze their combined effects in vitro and in living cells, respectively. Individually, both proteins showed their expected activities in microtubule stabilization and destruction respectively. In MAP1B/SCG10 double-transfected cells, MAP1B could not protect microtubules from SCG10-induced disassembly in most cells, in particular not in cells that contained high levels of SCG10. This suggests that SCG10 is more potent to destabilize microtubules than MAP1B to rescue them. In microtubule assembly assays, MAP1B promoted microtubule formation at a ratio of 1 MAP1B per 70 tubulin dimers while a ratio of 1 SCG10 per two tubulin dimers was needed to destroy microtubules. In addition to its known binding to tubulin dimers, SCG10 binds also to purified microtubules in growth cones of dorsal root ganglion neurons in culture. In conclusion, neuronal microtubules are regulated by antagonistic effects of MAP1B and SCG10 and a fine tuning of the balance of these proteins may be critical for the regulation of microtubule dynamics in growth cones.
Resumo:
Monitoring of posture allocations and activities enables accurate estimation of energy expenditure and may aid in obesity prevention and treatment. At present, accurate devices rely on multiple sensors distributed on the body and thus may be too obtrusive for everyday use. This paper presents a novel wearable sensor, which is capable of very accurate recognition of common postures and activities. The patterns of heel acceleration and plantar pressure uniquely characterize postures and typical activities while requiring minimal preprocessing and no feature extraction. The shoe sensor was tested in nine adults performing sitting and standing postures and while walking, running, stair ascent/descent and cycling. Support vector machines (SVMs) were used for classification. A fourfold validation of a six-class subject-independent group model showed 95.2% average accuracy of posture/activity classification on full sensor set and over 98% on optimized sensor set. Using a combination of acceleration/pressure also enabled a pronounced reduction of the sampling frequency (25 to 1 Hz) without significant loss of accuracy (98% versus 93%). Subjects had shoe sizes (US) M9.5-11 and W7-9 and body mass index from 18.1 to 39.4 kg/m2 and thus suggesting that the device can be used by individuals with varying anthropometric characteristics.
Resumo:
Objective: Macrophages play a critical role in wound repair. However, the specific role of the different macrophage subtypes in wound repair remains incompletely understood. The aim of this study was to compare the wound repair activities of undifferentiated macrophages (M0), classically activated macrophages (M1) and alternatively activated (M2) macrophages. Methods: The macrophage repair activities of intestinal wounds were evaluated using in vitro and in vivo models. Results: All three macrophage subtypes enhanced wound closure in vitro, with the M2 macrophages demonstrating greater repair activities than the M0 and M1 macrophages. Injection of M0 and M2 macrophages into mice with experimental dextran sodium sulfate-induced colitis significantly enhanced ulcer repair when compared to control mice. In contrast, injection of M1 macrophages did not affect ulcer repair. Conclusions: These results underscore the wound repair capacity of different macrophage subsets. Notably, wound repair activity is not restricted to M2 macrophages, as the current literature suggests. © 2014 S. Karger AG, Basel.
Resumo:
The reaction of fluorinated fatty acids, perfluorobutyric acid (C3F7CO2H), and perfluorododecanoic acid (C11F23CO2H), with dodecacarbonyltriruthenium (Ru-3(CO)(12)) under reflux in tetrahydrofuran, followed by addition of two-electron donors (L) such as pyridine, 1,3,5-triaza-7-phosphatricyclo[3.3.1.1]decane, or triphenylphosphine, gives stable diruthenium complexes Ru-2(CO)(4)((2)-(2)-O2CC3F7)(2)(L)(2) (1a, L=C5H5N; 1b, L=PTA; 1c, L=PPh3) and Ru-2(CO)(4)((2)-(2)-O2CC11F23)(2)(L)(2) (2a, L=C5H5N; 2b, L=PTA; 2c, L=PPh3). The catalytic activity of the complexes for hydrogenation of styrene under supercritical carbon dioxide has been assessed and compared to the analogous triphenylphosphine complexes with non-fluorinated carboxylato groups Ru-2(CO)(4)((2)-(2)-O2CC3H7)(2)(PPh3)(2) (3) and Ru-2(CO)(4)((2)-(2)-O2CC11H23)(2)(PPh3)(2) (4). In addition, the cytotoxicities of the fluorinated complexes 1 were also evaluated on several human cancer cell lines (A2780, A549, Me300, HeLa). The complexes appear to be moderately cytotoxic, showing greater activity on the Me300 melanoma cells. Single-crystal X-ray structure analyses of 1a and 3 show the typical sawhorse-type arrangement of the diruthenium tetracarbonyl backbone with two bridging carboxylates and two terminal ligands occupying the axial positions.
Resumo:
BACKGROUND: The mammalian target of rapamycin (mTOR) is frequently activated in colon cancers due to mutations in the phosphatidylinositol 3-kinase (PI3K) pathway. Targeting mTOR with allosteric inhibitors of mTOR such as rapamycin reduces colon cancer progression in several experimental models. Recently, a new class of mTOR inhibitors that act as ATP-competitive inhibitors of mTOR, has been developed. The effectiveness of these drugs in colon cancer cells has however not been fully characterized. METHODS: LS174T, SW480 and DLD-1 colon cancer cell lines were treated with PP242 an ATP-competitive inhibitor of mTOR, NVP-BEZ235, a dual PI3K/mTOR inhibitor or rapamycin. Tumor cell growth, proliferation and survival were assessed by MTS assay, 5-bromo-2'-deoxyuridine (BrDU) incorporation or by quantification of DNA fragmentation respectively. In vivo, the anticancer activity of mTOR inhibitors was evaluated on nude mice bearing colon cancer xenografts. RESULTS: PP242 and NVP-BEZ235 reduced the growth, proliferation and survival of LS174T and DLD-1 colon cancer cells more efficiently than rapamycin. Similarly, PP242 and NVP-BEZ235 also decreased significantly the proliferation and survival of SW480 cells which were resistant to the effects of rapamycin. In vivo, PP242 and NVP-BEZ235 reduced the growth of xenografts generated from LS174T and SW480 cells. Finally, we also observed that the efficacy of ATP-competitive inhibitors of mTOR was enhanced by U0126, a MEK inhibitor. CONCLUSIONS: Taken together, these results show that ATP-competitive inhibitors of mTOR are effective in blocking colon cancer cell growth in vitro and in vivo and thus represent a therapeutic option in colon cancer either alone or in combination with MEK inhibitors.
Resumo:
Peroxisome proliferator-activated receptors (PPARs) are essential in glucose and lipid metabolism and are implicated in metabolic disorders predisposing to atherosclerosis, such as diabetes and dyslipidemia. Conversely, antidiabetic glitazones and hypolipidemic fibrate drugs, known as PPARgamma and PPARalpha ligands, respectively, reduce the process of atherosclerotic lesion formation, which involves chronic immunoinflammatory processes. Major histocompatibility complex class II (MHC-II) molecules, expressed on the surface of specialized cells, are directly involved in the activation of T lymphocytes and in the control of the immune response. Interestingly, expression of MHC-II has recently been observed in atherosclerotic plaques, and it can be induced by the proinflammatory cytokine interferon-gamma (IFN-gamma) in vascular cells. To explore a possible role for PPAR ligands in the regulation of the immune response, we investigated whether PPAR activation affects MHC-II expression in atheroma-associated cells. In the present study, we demonstrate that PPARgamma but not PPARalpha ligands act as inhibitors of IFN-gamma-induced MHC-II expression and thus as repressors of MHC-II-mediated T-cell activation. All different types of PPARgamma ligands tested inhibit MHC-II. This effect of PPARgamma ligands is due to a specific inhibition of promoter IV of CIITA and does not concern constitutive expression of MHC-II. Thus, the beneficial effects of antidiabetic PPARgamma activators on atherosclerotic plaque development may be partly explained by their repression of MHC-II expression and subsequent inhibition of T-lymphocyte activation.
Resumo:
The role of cytochrome P450 in the metabolism of dextromethorphan, amitriptyline, midazolam, S-mephenytoin, citalopram, fluoxetine and sertraline was investigated in rat and human brain microsomes. Depending on the parameters, the limit of quantification using gas chromatography-mass spectrometry methods was between 1.6 and 20 pmol per incubation, which generally contained 1500 microg protein. Amitriptyline was shown to be demethylated to nortriptyline by both rat and human microsomes. Inhibition studies using ketoconazole, furafylline, sulfaphenazole, omeprazole and quinidine suggested that CYP3A4 is the isoform responsible for this reaction whereas CYP1A2, CYP2C9, CYP2C19 and CYP2D6 do not seem to be involved. This result was confirmed by using a monoclonal antibody against CYP3A4. Dextromethorphan was metabolized to dextrorphan in rat brain microsomes and was inhibited by quinidine and by a polyclonal antibody against CYP2D6. Only the addition of exogenous reductase allowed the measurement of this activity in human brain microsomes. Metabolites of the other substrates could not be detected, possibly due to an insufficiently sensitive method. It is concluded that cytochrome P450 activity in the brain is very low, but that psychotropic drugs could undergo a local cerebral metabolism which could have pharmacological and/or toxicological consequences.
Resumo:
For enterococcal implant-associated infections, the optimal treatment regimen has not been defined. We investigated the activity of daptomycin, vancomycin, and gentamicin (and their combinations) against Enterococcus faecalis in vitro and in a foreign-body infection model. Antimicrobial activity was investigated by time-kill and growth-related heat production studies (microcalorimetry) as well as with a guinea pig model using subcutaneously implanted cages. Infection was established by percutaneous injection of E. faecalis in the cage. Antibiotic treatment for 4 days was started 3 h after infection. Cages were removed 5 days after end of treatment to determine the cure rate. The MIC, the minimal bactericidal concentration (MBC) in the logarithmic phase, and the MBC in the stationary phase were 1.25, 5, and >20 μg/ml for daptomycin, 1, >64, and >64 μg/ml for vancomycin, and 16, 32, and 4 μg/ml for gentamicin, respectively. In vitro, gentamicin at subinhibitory concentrations improved the activity against E. faecalis when combined with daptomycin or vancomycin in the logarithmic and stationary phases. In the animal model, daptomycin cured 25%, vancomycin 17%, and gentamicin 50% of infected cages. In combination with gentamicin, the cure rate for daptomycin increased to 55% and that of vancomycin increased to 33%. In conclusion, daptomycin was more active than vancomycin against adherent E. faecalis, and its activity was further improved by the addition of gentamicin. Despite a short duration of infection (3 h), the cure rates did not exceed 55%, highlighting the difficulty of eradicating E. faecalis from implants already in the early stage of implant-associated infection.
Resumo:
An in vitro model, the aggregating brain cell culture of fetal rat telencephalon, has been used to study the maturation-dependent sensitivity of brain cells to two organophosphorus pesticides (OPs), chlorpyrifos and parathion, and to their oxon derivatives. Immature (DIV 5-15) or differentiated (DIV 25-35) brain cells were treated continuously for 10 days. Acetylcholinesterase (AChE) inhibitory potency for the OPs was compared to that of eserine (physostigmine), a reversible AChE inhibitor. Oxon derivatives were more potent AChE inhibitors than the parent compounds, and parathion was more potent than chlorpyrifos. No maturation-dependent differences for AChE inhibition were found for chlorpyrifos and eserine, whereas for parathion and paraoxon there was a tendency to be more effective in immature cultures, while the opposite was true for chlorpyrifos-oxon. Toxic effects, assessed by measuring protein content as an index of general cytotoxicity, and various enzyme activities as cell-type-specific neuronal and glial markers (ChAT and GAD, for cholinergic and GABAergic neurons, respectively, and GS and CNP, for astrocytes and oligodendrocytes, respectively) were only found at more than 70% of AChE inhibition. Immature compared to differentiated cholinergic neurons appeared to be more sensitive to OP treatments. The oxon derivates were found to be more toxic on neurons than the parent compounds, and chlorpyrifos was more toxic than parathion. Eserine was not neurotoxic. These results indicate that inhibition of AChE remains the most sensitive macromolecular target of OP exposure, since toxic effects were found at concentrations in which AChE was inhibited. Furthermore, the compound-specific reactions, the differential pattern of toxicity of OPs compared to eserine, and the higher sensitivity of immature brain cells suggest that the toxic effects and inhibition of AChE are unrelated.
Resumo:
Selection of action may rely on external guidance or be motivated internally, engaging partially distinct cerebral networks. With age, there is an increased allocation of sensorimotor processing resources, accompanied by a reduced differentiation between the two networks of action selection. The present study examines the age effects on the motor-related oscillatory patterns related to the preparation of externally and internally guided movements. Thirty-two older and 30 younger adults underwent three delayed motor tasks with S1 as preparatory and S2 as imperative cue: Full, laterality instructed by S1 (external guidance); Free, laterality freely selected (internal guidance); None, laterality instructed by S2 (no preparation). Electroencephalogram (EEG) was recorded using 64 surface electrodes. Motor-Related Amplitude Asymmetries (MRAA), indexing the lateralization of oscillatory activities, were analyzed within the S1-S2 interval in the mu (9-12 Hz) and low beta (15-20 Hz) motor-related frequency bands. Reaction times to S2 were slower in older than younger subjects, and slower in the Free than in the Full condition in older subjects only. In the Full condition, there were significant mu MRAA in both age groups, and significant low beta MRAA only in older adults. The Free condition was associated with large mu MRAA in younger adults and limited low beta MRAA in older adults. In younger subjects, the lateralization of mu activity in both Full and Free conditions indicated effective external and internal motor preparation. In older subjects, external motor preparation was associated with lateralization of low beta in addition with mu activity, compatible with an increase of motor-related resources. In contrast, absence of mu and limited low beta lateralization in internal motor preparation was concomitant with reaction time slowing and suggested less efficient cerebral processes subtending free movement selection in older adults, indicating reduced capacity for internally driven action with age.
Resumo:
IL-28 (IFN-λ) cytokines exhibit potent antiviral and antitumor function but their full spectrum of activities remains largely unknown. Recently, IL-28 cytokine family members were found to be profoundly down-regulated in allergic asthma. We now reveal a novel role of IL-28 cytokines in inducing type 1 immunity and protection from allergic airway disease. Treatment of wild-type mice with recombinant or adenovirally expressed IL-28A ameliorated allergic airway disease, suppressed Th2 and Th17 responses and induced IFN-γ. Moreover, abrogation of endogenous IL-28 cytokine function in IL-28Rα(-/-) mice exacerbated allergic airway inflammation by augmenting Th2 and Th17 responses, and IgE levels. Central to IL-28A immunoregulatory activity was its capacity to modulate lung CD11c(+) dendritic cell (DC) function to down-regulate OX40L, up-regulate IL-12p70 and promote Th1 differentiation. Consistently, IL-28A-mediated protection was absent in IFN-γ(-/-) mice or after IL-12 neutralization and could be adoptively transferred by IL-28A-treated CD11c(+) cells. These data demonstrate a critical role of IL-28 cytokines in controlling T cell responses in vivo through the modulation of lung CD11c(+) DC function in experimental allergic asthma. →See accompanying Closeup by Michael R Edwards and Sebastian L Johnston http://dx.doi.org/10.1002/emmm.201100143.
Resumo:
The AP-1 family transcription factor ATF2 is essential for development and tissue maintenance in mammals. In particular, ATF2 is highly expressed and activated in the brain and previous studies using mouse knockouts have confirmed its requirement in the cerebellum as well as in vestibular sense organs. Here we present the analysis of the requirement for ATF2 in CNS development in mouse embryos, specifically in the brainstem. We discovered that neuron-specific inactivation of ATF2 leads to significant loss of motoneurons of the hypoglossal, abducens and facial nuclei. While the generation of ATF2 mutant motoneurons appears normal during early development, they undergo caspase-dependent and independent cell death during later embryonic and foetal stages. The loss of these motoneurons correlates with increased levels of stress activated MAP kinases, JNK and p38, as well as aberrant accumulation of phosphorylated neurofilament proteins, NF-H and NF-M, known substrates for these kinases. This, together with other neuropathological phenotypes, including aberrant vacuolisation and lipid accumulation, indicates that deficiency in ATF2 leads to neurodegeneration of subsets of somatic and visceral motoneurons of the brainstem. It also confirms that ATF2 has a critical role in limiting the activities of stress kinases JNK and p38 which are potent inducers of cell death in the CNS.
Resumo:
OBJECTIVE: Macrophages play a critical role in intestinal wound repair. However, the molecular pathways that regulate macrophage wound repair activities remain poorly understood. The aim of this study was to evaluate the role of GM-CSF receptor signaling in the wound repair activities of macrophages. METHODS: Murine macrophages were differentiated from bone marrow cells and human macrophages from monocytes isolated from peripheral blood mononuclear cells of Crohn's disease (CD) patients. In vitro models were used to study the repair activities of macrophages. RESULTS: We provide evidence that GM-CSF receptor signaling is required for murine macrophages to promote epithelial repair. In addition, we demonstrate that the deficient repair properties of macrophages from CD patients with active disease can be recovered via GM-CSF therapy. CONCLUSION: Our data support a critical role of the GM-CSF signaling pathway in the pro-repair activities of mouse and human macrophages. © 2014 S. Karger AG, Basel.
Resumo:
A comprehensive understanding of the complex, autologous cellular interactions and regulatory mechanisms that occur during normal dendritic cell (DC)-stimulated immune responses is critical to optimizing DC-based immunotherapy. We have found that mature, immunogenic human monocyte-derived DCs (moDCs) up-regulate the immune-inhibitory enzyme, indoleamine 2,3-dioxygenase (IDO). Under stringent autologous culture conditions without exogenous cytokines, mature moDCs expand regulatory T cells (Tregs) by an IDO-dependent mechanism. The priming of resting T cells with autologous, IDO-expressing, mature moDCs results in up to 10-fold expansion of CD4(+)CD25(bright)Foxp3(+)CD127(neg) Tregs. Treg expansion requires moDC contact, CD80/CD86 ligation, and endogenous interleukin-2. Cytofluorographically sorted CD4(+) CD25(bright)Foxp3(+) Tregs inhibit as much as 80% to 90% of DC-stimulated autologous and allogeneic T-cell proliferation, in a dose-dependent manner at Treg:T-cell ratios of 1:1, 1:5, and as low as 1:25. CD4(+)CD25(bright)Foxp3(+) Tregs also suppress the generation of cytotoxic T lymphocytes specific for the Wilms tumor antigen 1, resulting in more than an 80% decrease in specific target cell lysis. Suppression by Tregs is both contact-dependent and transforming growth factor-beta-mediated. Although mature moDCs can generate Tregs by this IDO-dependent mechanism to limit otherwise unrestrained immune responses, inhibition of this counter-regulatory pathway should also prove useful in sustaining responses stimulated by DC-based immunotherapy.