95 resultados para PHILADELPHIA-CHROMOSOME
Resumo:
A total of 357 house mice (Mus domesticus) from 83 localities uniformly distributed throughout Switzerland were screened for the presence of a homogenously staining region (HSR) on chromosome 1. Altogether 47 mice from 11 localities were HSR/+ or HSR/HSR. One sample of 11 individuals all had an HSR/HSR karyotype. Almost all mice with the variant were collected from the Rhone valley (HSR frequency: 61%) and Val Bregaglia (HSR frequency: 81%). For samples from most of the area of Switzerland, the HSR was absent. There was no strong association between the geographic distribution of the HSR and the areas of occurrence of metacentrics. However, at Chiggiogna the HSR was found on Rb (1.3). Possible explanations for the HSR polymorphism are discussed.
Resumo:
Obesity has become a major worldwide challenge to public health, owing to an interaction between the Western 'obesogenic' environment and a strong genetic contribution. Recent extensive genome-wide association studies (GWASs) have identified numerous single nucleotide polymorphisms associated with obesity, but these loci together account for only a small fraction of the known heritable component. Thus, the 'common disease, common variant' hypothesis is increasingly coming under challenge. Here we report a highly penetrant form of obesity, initially observed in 31 subjects who were heterozygous for deletions of at least 593 kilobases at 16p11.2 and whose ascertainment included cognitive deficits. Nineteen similar deletions were identified from GWAS data in 16,053 individuals from eight European cohorts. These deletions were absent from healthy non-obese controls and accounted for 0.7% of our morbid obesity cases (body mass index (BMI) >or= 40 kg m(-2) or BMI standard deviation score >or= 4; P = 6.4 x 10(-8), odds ratio 43.0), demonstrating the potential importance in common disease of rare variants with strong effects. This highlights a promising strategy for identifying missing heritability in obesity and other complex traits: cohorts with extreme phenotypes are likely to be enriched for rare variants, thereby improving power for their discovery. Subsequent analysis of the loci so identified may well reveal additional rare variants that further contribute to the missing heritability, as recently reported for SIM1 (ref. 3). The most productive approach may therefore be to combine the 'power of the extreme' in small, well-phenotyped cohorts, with targeted follow-up in case-control and population cohorts.
Resumo:
PURPOSE: To identify the genetic defect for the Coppock-like cataract (CCL) affecting a Swiss family, which defect was unlinked to the chromosome 2q33-35 CCL locus. METHODS: A large family was characterized for linkage analysis by slit lamp examination or by the review of drawings made before cataract extraction. The affection status was attributed before genotyping, and the genotyping was masked to the affection status. Two-point and multipoint linkage analyses were performed using the MLINK and the LINKMAP components of the LINKAGE program package (ver. 5.1), respectively. Mutational analysis of candidate genes was performed by a combination of direct cycle sequencing and an amplification refractory mutation system assay. RESULTS: Ten individuals were affected with the CCL phenotype. The disease was autosomal dominant and appeared to be fully penetrant. A new CCL locus was identified on chromosome 22q11.2 within a 11.67-cM interval (maximum lod score [Zmax] = 4.14; theta = 0). Mutational analysis of the CRYBB2 candidate gene identified a disease-causing mutation in exon 6. This sequence change was identical with that previously described to be associated with the cerulean cataract, a clinically distinct entity. CONCLUSIONS: The CCL phenotype is genetically heterogeneous with a second gene on chromosome 22q11.2, CRYBB2. The CCL and the cerulean cataract are two distinct clinical entities associated with the same genetic defect. This work provides evidence for a modifier factor that influences cataract formation and that remains to be identified.
Resumo:
The analysis of conservation between the human and mouse genomes resulted in the identification of a large number of conserved nongenic sequences (CNGs). The functional significance of this nongenic conservation remains unknown, however. The availability of the sequence of a third mammalian genome, the dog, allows for a large-scale analysis of evolutionary attributes of CNGs in mammals. We have aligned 1638 previously identified CNGs and 976 conserved exons (CODs) from human chromosome 21 (Hsa21) with their orthologous sequences in mouse and dog. Attributes of selective constraint, such as sequence conservation, clustering, and direction of substitutions were compared between CNGs and CODs, showing a clear distinction between the two classes. We subsequently performed a chromosome-wide analysis of CNGs by correlating selective constraint metrics with their position on the chromosome and relative to their distance from genes. We found that CNGs appear to be randomly arranged in intergenic regions, with no bias to be closer or farther from genes. Moreover, conservation and clustering of substitutions of CNGs appear to be completely independent of their distance from genes. These results suggest that the majority of CNGs are not typical of previously described regulatory elements in terms of their location. We propose models for a global role of CNGs in genome function and regulation, through long-distance cis or trans chromosomal interactions.
Resumo:
Mammalian sex chromosomes have undergone profound changes since evolving from ancestral autosomes. By examining retroposed genes in the human and mouse genomes, we demonstrate that, during evolution, the mammalian X chromosome has generated and recruited a disproportionately high number of functional retroposed genes, whereas the autosomes experienced lower gene turnover. Most autosomal copies originating from X-linked genes exhibited testis-biased expression. Such export is incompatible with mutational bias and is likely driven by natural selection to attain male germline function. However, the excess recruitment is consistent with a combination of both natural selection and mutational bias.
Resumo:
Nucleotide composition analyses of bacterial genomes such as cumulative GC skew highlight the atypical, strongly asymmetric architecture of the recently published chromosome of Idiomarina loihiensis L2TR, suggesting that an inversion of a 600-kb chromosomal segment occurred. The presence of 3.4-kb inverted repeated sequences at the borders of the putative rearrangement supports this hypothesis. Reverting in silico this segment restores (1) a symmetric chromosome architecture; (2) the co-orientation of transcription of all rRNA operons with DNA replication; and (3) a better conservation of gene order between this chromosome and other gamma-proteobacterial ones. Finally, long-range PCRs encompassing the ends of the 600-kb segment reveal the existence of the reverted configuration but not of the published one. This demonstrates how cumulative nucleotide-skew analyses can validate genome assemblies.
Resumo:
The predictive potential of six selected factors was assessed in 72 patients with primary myelodysplastic syndrome using univariate and multivariate logistic regression analysis of survival at 18 months. Factors were age (above median of 69 years), dysplastic features in the three myeloid bone marrow cell lineages, presence of chromosome defects, all metaphases abnormal, double or complex chromosome defects (C23), and a Bournemouth score of 2, 3, or 4 (B234). In the multivariate approach, B234 and C23 proved to be significantly associated with a reduction in the survival probability. The similarity of the regression coefficients associated with these two factors means that they have about the same weight. Consequently, the model was simplified by counting the number of factors (0, 1, or 2) present in each patient, thus generating a scoring system called the Lausanne-Bournemouth score (LB score). The LB score combines the well-recognized and easy-to-use Bournemouth score (B score) with the chromosome defect complexity, C23 constituting an additional indicator of patient outcome. The predicted risk of death within 18 months calculated from the model is as follows: 7.1% (confidence interval: 1.7-24.8) for patients with an LB score of 0, 60.1% (44.7-73.8) for an LB score of 1, and 96.8% (84.5-99.4) for an LB score of 2. The scoring system presented here has several interesting features. The LB score may improve the predictive value of the B score, as it is able to recognize two prognostic groups in the intermediate risk category of patients with B scores of 2 or 3. It has also the ability to identify two distinct prognostic subclasses among RAEB and possibly CMML patients. In addition to its above-described usefulness in the prognostic evaluation, the LB score may bring new insights into the understanding of evolution patterns in MDS. We used the combination of the B score and chromosome complexity to define four classes which may be considered four possible states of myelodysplasia and which describe two distinct evolutional pathways.
Resumo:
During a 3-year period, 848 patients were detected as carriers of methicillin-resistant Staphylococcus aureus (MRSA) by the Xpert MRSA assay (Cepheid). Among them, 108 patients (12.7 %) were colonized with strains showing methicillin-susceptible phenotypes and absence of the mecA gene, despite being positive with the rapid polymerase chain reaction (PCR) assay. DNA sequences of the staphylococcal cassette chromosome mec (SCCmec) insertion site of these "false-positive" strains was determined by direct sequencing of the genomic DNA. More than half (53.7 %) of the strains had DNA sequences unrelated to either SCC or SCCmec and one-third had DNA sequences related to non-mec SCC. Only 10.2 % of the strains carried sequences related to SCCmec, suggesting that a sequence containing the mecA gene was lost from an SCCmec. These findings differ from the general idea that all methicillin-susceptible S. aureus having positive Xpert MRSA assay results are essentially MRSA that lost the mecA gene.
Resumo:
BACKGROUND: The prognostic impact of segmental chromosome alterations (SCAs) in children older than 1 year, diagnosed with localised unresectable neuroblastoma (NB) without MYCN amplification enrolled in the European Unresectable Neuroblastoma (EUNB) protocol is still to be clarified, while, for other group of patients, the presence of SCAs is associated with poor prognosis. METHODS: To understand the role of SCAs we performed multilocus/pangenomic analysis of 98 tumour samples from patients enrolled in the EUNB protocol. RESULTS: Age at diagnosis was categorised into two groups using 18 months as the age cutoff. Significant difference in the presence of SCAs was seen in tumours of patients between 12 and 18 months and over 18 months of age at diagnosis, respectively (P=0.04). A significant correlation (P=0.03) was observed between number of SCAs per tumour and age. Event-free (EFS) and overall survival (OS) were calculated in both age groups, according to both the presence and number of SCAs. In older patients, a poorer survival was associated with the presence of SCAs (EFS=46% vs 75%, P=0.023; OS=66.8% vs 100%, P=0.003). Moreover, OS of older patients inversely correlated with number of SCAs (P=0.002). Finally, SCAs provided additional prognostic information beyond histoprognosis, as their presence was associated with poorer OS in patients over 18 months with unfavourable International Neuroblastoma Pathology Classification (INPC) histopathology (P=0.018). CONCLUSIONS: The presence of SCAs is a negative prognostic marker that impairs outcome of patients over the age of 18 months with localised unresectable NB without MYCN amplification, especially when more than one SCA is present. Moreover, in older patients with unfavourable INPC tumour histoprognosis, the presence of SCAs significantly affects OS.
Resumo:
Two hundred and forty-five individuals of the common shrew (Sorex araneus, Insectivora, Mammalia) from 24 sampling localities situated in four different valleys of the western European Alps were genotyped for six microsatellite loci. Allelic variability ranged from 3 to 32 different alleles at a single locus and the average gene diversity over all loci was 0.69. An analysis for F and R statistics revealed weak genetic population subdivision (Fst = 0.032; Rst = 0.016). This suggests considerable gene flow and little phylogeographic structure within and between valleys. We tested whether a stepwise mutation model (SMM) better explained variation at the microsatellite loci than an infinite allele model (IAM). No trend in favor of either model was detected.
Resumo:
Eukaryotic transcription is tightly regulated by transcriptional regulatory elements, even though these elements may be located far away from their target genes. It is now widely recognized that these regulatory elements can be brought in close proximity through the formation of chromatin loops, and that these loops are crucial for transcriptional regulation of their target genes. The chromosome conformation capture (3C) technique presents a snapshot of long-range interactions, by fixing physically interacting elements with formaldehyde, digestion of the DNA, and ligation to obtain a library of unique ligation products. Recently, several large-scale modifications to the 3C technique have been presented. Here, we describe chromosome conformation capture sequencing (4C-seq), a high-throughput version of the 3C technique that combines the 3C-on-chip (4C) protocol with next-generation Illumina sequencing. The method is presented for use in mammalian cell lines, but can be adapted to use in mammalian tissues and any other eukaryotic genome.
Resumo:
Both obesity and being underweight have been associated with increased mortality. Underweight, defined as a body mass index (BMI) ≤ 18.5 kg per m(2) in adults and ≤ -2 standard deviations from the mean in children, is the main sign of a series of heterogeneous clinical conditions including failure to thrive, feeding and eating disorder and/or anorexia nervosa. In contrast to obesity, few genetic variants underlying these clinical conditions have been reported. We previously showed that hemizygosity of a ∼600-kilobase (kb) region on the short arm of chromosome 16 causes a highly penetrant form of obesity that is often associated with hyperphagia and intellectual disabilities. Here we show that the corresponding reciprocal duplication is associated with being underweight. We identified 138 duplication carriers (including 132 novel cases and 108 unrelated carriers) from individuals clinically referred for developmental or intellectual disabilities (DD/ID) or psychiatric disorders, or recruited from population-based cohorts. These carriers show significantly reduced postnatal weight and BMI. Half of the boys younger than five years are underweight with a probable diagnosis of failure to thrive, whereas adult duplication carriers have an 8.3-fold increased risk of being clinically underweight. We observe a trend towards increased severity in males, as well as a depletion of male carriers among non-medically ascertained cases. These features are associated with an unusually high frequency of selective and restrictive eating behaviours and a significant reduction in head circumference. Each of the observed phenotypes is the converse of one reported in carriers of deletions at this locus. The phenotypes correlate with changes in transcript levels for genes mapping within the duplication but not in flanking regions. The reciprocal impact of these 16p11.2 copy-number variants indicates that severe obesity and being underweight could have mirror aetiologies, possibly through contrasting effects on energy balance.