174 resultados para Optical images.
Resumo:
Purpose: To evaluate the diagnostic value and image quality of CT with filtered back projection (FBP) compared with adaptive statistical iterative reconstructed images (ASIR) in body stuffers with ingested cocaine-filled packets.Methods and Materials: Twenty-nine body stuffers (mean age 31.9 years, 3 women) suspected for ingestion of cocaine-filled packets underwent routine-dose 64-row multidetector CT with FBP (120kV, pitch 1.375, 100-300 mA and automatic tube current modulation (auto mA), rotation time 0.7sec, collimation 2.5mm), secondarily reconstructed with 30 % and 60 % ASIR. In 13 (44.83%) out of the body stuffers cocaine-filled packets were detected, confirmed by exact analysis of the faecal content including verification of the number (range 1-25). Three radiologists independently and blindly evaluated anonymous CT examinations (29 FBP-CT and 68 ASIR-CT) for the presence and number of cocaine-filled packets indicating observers' confidence, and graded them for diagnostic quality, image noise, and sharpness. Sensitivity, specificity, area under the receiver operating curve (ROC) Az and interobserver agreement between the 3 radiologists for FBP-CT and ASIR-CT were calculated.Results: The increase of the percentage of ASIR significantly diminished the objective image noise (p<0.001). Overall sensitivity and specificity for the detection of the cocaine-filled packets were 87.72% and 76.15%, respectively. The difference of ROC area Az between the different reconstruction techniques was significant (p= 0.0101), that is 0.938 for FBP-CT, 0.916 for 30 % ASIR-CT, and 0.894 for 60 % ASIR-CT.Conclusion: Despite the evident image noise reduction obtained by ASIR, the diagnostic value for detecting cocaine-filled packets decreases, depending on the applied ASIR percentage.
Resumo:
In this paper, we present and apply a semisupervised support vector machine based on cluster kernels for the problem of very high resolution image classification. In the proposed setting, a base kernel working with labeled samples only is deformed by a likelihood kernel encoding similarities between unlabeled examples. The resulting kernel is used to train a standard support vector machine (SVM) classifier. Experiments carried out on very high resolution (VHR) multispectral and hyperspectral images using very few labeled examples show the relevancy of the method in the context of urban image classification. Its simplicity and the small number of parameters involved make it versatile and workable by unexperimented users.
Resumo:
Over the past decade, significant interest has been expressed in relating the spatial statistics of surface-based reflection ground-penetrating radar (GPR) data to those of the imaged subsurface volume. A primary motivation for this work is that changes in the radar wave velocity, which largely control the character of the observed data, are expected to be related to corresponding changes in subsurface water content. Although previous work has indeed indicated that the spatial statistics of GPR images are linked to those of the water content distribution of the probed region, a viable method for quantitatively analyzing the GPR data and solving the corresponding inverse problem has not yet been presented. Here we address this issue by first deriving a relationship between the 2-D autocorrelation of a water content distribution and that of the corresponding GPR reflection image. We then show how a Bayesian inversion strategy based on Markov chain Monte Carlo sampling can be used to estimate the posterior distribution of subsurface correlation model parameters that are consistent with the GPR data. Our results indicate that if the underlying assumptions are valid and we possess adequate prior knowledge regarding the water content distribution, in particular its vertical variability, this methodology allows not only for the reliable recovery of lateral correlation model parameters but also for estimates of parameter uncertainties. In the case where prior knowledge regarding the vertical variability of water content is not available, the results show that the methodology still reliably recovers the aspect ratio of the heterogeneity.
Resumo:
OBJECTIVE: To test the ability of a novel phase-shifting medium (PSM) to provide sustained distension of the uterine cavity and produce saline infusion sonography (SIS)-like images in a simplified contrast ultrasound procedure. DESIGN: Prospective pilot feasibility trial of a new diagnostic procedure, contrast ultrasound. SETTING: Clinical reproductive endocrine and infertility unit of regional teaching hospital. PATIENT(S): Twenty-six asymptomatic infertile women (group I) and 27 women presenting with dysfunctional uterine bleeding (DUB) who were scheduled for exploratory surgery (group II). INTERVENTION(S): All women who were temporarily on oral contraceptive first had a regular pelvic ultrasound followed by the intrauterine instillation of up to 3 mL PSM, using a regular insemination catheter, after which all instruments were removed and a regular ultrasound was performed again. RESULT(S): In all 53 women, intrauterine instillation of 1-3 mL PSM resulted in a 3-7 mm uterine distension, sufficient to produce SIS-like images of the uterine cavity that lasted 7-10 min. Contrast ultrasound revealed an endometrial polyp in 3 asymptomatic women of group I. In group II. 12 of 14 women (86%) whose vaginal ultrasound were positive or dubious had positive findings with contrast ultrasound; 9 of 12 patients whose vaginal ultrasounds were negative also had positive contrast ultrasound findings. All the positive and negative findings of contrast ultrasound made in group II were confirmed anatomically (sensitivity and specificity of 100%), whereas the correlation for standard vaginal ultrasound was markedly lower at 57.1% and 85.7%, respectively. Most patients (46 of 53) reported no discomfort during or after the procedure, and 7 women described the procedure as mildly uncomfortable. CONCLUSION(S): Contrast ultrasound, a novel simple diagnostic procedure conducted after intrauterine instillation of 1-3 mL PSM using a simple plastic catheter, delivered SIS-quality images in asymptomatic (group I) and symptomatic (group II) patients while retaining the simplicity of standard ultrasound. We therefore foresee broad application of contrast ultrasound for sensitive and specific assessment for uterine pathologies in the physician's office.
Resumo:
We studied the influence of signal variability on human and model observers for detection tasks with realistic simulated masses superimposed on real patient mammographic backgrounds and synthesized mammographic backgrounds (clustered lumpy backgrounds, CLB). Results under the signal-known-exactly (SKE) paradigm were compared with signal-known-statistically (SKS) tasks for which the observers did not have prior knowledge of the shape or size of the signal. Human observers' performance did not vary significantly when benign masses were superimposed on real images or on CLB. Uncertainty and variability in signal shape did not degrade human performance significantly compared with the SKE task, while variability in signal size did. Implementation of appropriate internal noise components allowed the fit of model observers to human performance.
Resumo:
We present a segmentation method for fetal brain tissuesof T2w MR images, based on the well known ExpectationMaximization Markov Random Field (EM- MRF) scheme. Ourmain contribution is an intensity model composed of 7Gaussian distribution designed to deal with the largeintensity variability of fetal brain tissues. The secondmain contribution is a 3-steps MRF model that introducesboth local spatial and anatomical priors given by acortical distance map. Preliminary results on 4 subjectsare presented and evaluated in comparison to manualsegmentations showing that our methodology cansuccessfully be applied to such data, dealing with largeintensity variability within brain tissues and partialvolume (PV).
Resumo:
In this paper, we propose a new paradigm to carry outthe registration task with a dense deformation fieldderived from the optical flow model and the activecontour method. The proposed framework merges differenttasks such as segmentation, regularization, incorporationof prior knowledge and registration into a singleframework. The active contour model is at the core of ourframework even if it is used in a different way than thestandard approaches. Indeed, active contours are awell-known technique for image segmentation. Thistechnique consists in finding the curve which minimizesan energy functional designed to be minimal when thecurve has reached the object contours. That way, we getaccurate and smooth segmentation results. So far, theactive contour model has been used to segment objectslying in images from boundary-based, region-based orshape-based information. Our registration technique willprofit of all these families of active contours todetermine a dense deformation field defined on the wholeimage. A well-suited application of our model is theatlas registration in medical imaging which consists inautomatically delineating anatomical structures. Wepresent results on 2D synthetic images to show theperformances of our non rigid deformation field based ona natural registration term. We also present registrationresults on real 3D medical data with a large spaceoccupying tumor substantially deforming surroundingstructures, which constitutes a high challenging problem.
Resumo:
The 2009-2010 Data Fusion Contest organized by the Data Fusion Technical Committee of the IEEE Geoscience and Remote Sensing Society was focused on the detection of flooded areas using multi-temporal and multi-modal images. Both high spatial resolution optical and synthetic aperture radar data were provided. The goal was not only to identify the best algorithms (in terms of accuracy), but also to investigate the further improvement derived from decision fusion. This paper presents the four awarded algorithms and the conclusions of the contest, investigating both supervised and unsupervised methods and the use of multi-modal data for flood detection. Interestingly, a simple unsupervised change detection method provided similar accuracy as supervised approaches, and a digital elevation model-based predictive method yielded a comparable projected change detection map without using post-event data.
Resumo:
The sparsely spaced highly permeable fractures of the granitic rock aquifer at Stang-er-Brune (Brittany, France) form a well-connected fracture network of high permeability but unknown geometry. Previous work based on optical and acoustic logging together with single-hole and cross-hole flowmeter data acquired in 3 neighbouring boreholes (70-100 m deep) has identified the most important permeable fractures crossing the boreholes and their hydraulic connections. To constrain possible flow paths by estimating the geometries of known and previously unknown fractures, we have acquired, processed and interpreted multifold, single- and cross-hole GPR data using 100 and 250 MHz antennas. The GPR data processing scheme consisting of timezero corrections, scaling, bandpass filtering and F-X deconvolution, eigenvector filtering, muting, pre-stack Kirchhoff depth migration and stacking was used to differentiate fluid-filled fracture reflections from source generated noise. The final stacked and pre-stack depth-migrated GPR sections provide high-resolution images of individual fractures (dipping 30-90°) in the surroundings (2-20 m for the 100 MHz antennas; 2-12 m for the 250 MHz antennas) of each borehole in a 2D plane projection that are of superior quality to those obtained from single-offset sections. Most fractures previously identified from hydraulic testing can be correlated to reflections in the single-hole data. Several previously unknown major near vertical fractures have also been identified away from the boreholes.
Resumo:
Nonlinear optical nanocrystals have been recently introduced as a promising alternative to fluorescent probes for multiphoton microscopy. We present for the first time a complete survey of the properties of five nanomaterials (KNbO(3), LiNbO(3), BaTiO(3), KTP, and ZnO), describing their preparation and stabilization and providing quantitative estimations of their nonlinear optical response. In the light of their prospective use as biological and clinical markers, we assess their biocompatibility on human healthy and cancerous cell lines. Finally, we demonstrate the great potential for cell imaging of these inherently nonlinear probes in terms of optical contrast, wavelength flexibility, and signal photostability.