68 resultados para Omega-3 fatty acids


Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND/AIMS: Fibroblast growth factor 21 (FGF21) is a key mediator of glucose and lipid metabolism. However, the beneficial effects of exogenous FGF21 administration are attenuated in obese animals and humans with elevated levels of circulating free fatty acids (FFA). METHODS: We investigated in vitro how FFA impact FGF21 effects on hepatic lipid metabolism. RESULTS: In the absence of FFA, FGF21 reduced lipogenesis and increased lipid oxidation in HepG2 cells. Inhibition of lipogenesis was associated with a down regulation of SREBP-1c, FAS and SCD1. The lipid-lowering effect was associated with AMPK and ACC phosphorylation, and up regulation of CPT-1α expression. Further, FGF21 treatment reduced TNFα gene expression, suggesting a beneficial action of FGF21 on inflammation. In contrast, the addition of FFA abolished the positive effects of FGF21 on lipid metabolism. CONCLUSION: In the absence of FFA, FGF21 improves lipid metabolism in HepG2 cells and reduces the inflammatory cytokine TNFα. However, under high levels of FFA, FGF21 action on lipid metabolism and TNFα gene expression is impaired. Therefore, FFA impair FGF21 action in HepG2 cells potentially through TNFα.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Friedman et al. report that hemodialysis patients with the highest levels of n-3 fatty acids had impressively low odds of sudden cardiac death. The study is limited by a small sample size, and the analysis relies on only a single baseline measurement of blood levels. Recent randomized evidence indeed fails to support that n-3 fatty acids may prevent sudden death in nonrenal patients. More evidence is needed to advocate fish oil in this setting.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We elucidated the mechanisms of action of two n-3 PUFAs, eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), in Jurkat T-cells. Both DHA and EPA were principally incorporated into phospholipids in the following order: phosphatidylcholine < phosphatidylethanolamine < phosphatidylinositol/phosphatidylserine. Furthermore, two isoforms of phospholipase A(2) (i.e., calcium-dependent and calcium-independent) were implicated in the release of DHA and EPA, respectively, during activation of these cells. The two fatty acids inhibited the phorbol 12-myristate 13-acetate (PMA)-induced plasma membrane translocation of protein kinase C (PKC)-alpha and -epsilon. The two n-3 PUFAs also inhibited the nuclear translocation of nuclear factor kappaB (NF-kappaB) and the transcription of the interleukin-2 (IL-2) gene in PMA-activated Jurkat T-cells. Together, these results demonstrate that DHA and EPA, being released by two isoforms of phospholipase A(2), modulate IL-2 gene expression by exerting their action on two PKC isoforms and NF-kappaB in Jurkat T-cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polyhydroxyalkanoate (PHA) is a family of polymers composed primarily of R-3-hydroxyalkanoic acids. These polymers have properties of biodegradable thermoplastics and elastomers. Medium-chain-length PHAs (MCL-PHAs) are synthesized in bacteria by using intermediates of the beta-oxidation of alkanoic acids. To assess the feasibility of producing MCL-PHAs in plants, Arabidopsis thaliana was transformed with the PhaC1 synthase from Pseudomonas aeruginosa modified for peroxisome targeting by addition of the carboxyl 34 amino acids from the Brassica napus isocitrate lyase. Immunocytochemistry demonstrated that the modified PHA synthase was appropriately targeted to leaf-type peroxisomes in light-grown plants and glyoxysomes in dark-grown plants. Plants expressing the PHA synthase accumulated electron-lucent inclusions in the glyoxysomes and leaf-type peroxisomes, as well as in the vacuole. These inclusions were similar to bacterial PHA inclusions. Analysis of plant extracts by GC and mass spectrometry demonstrated the presence of MCL-PHA in transgenic plants to approximately 4 mg per g of dry weight. The plant PHA contained saturated and unsaturated 3-hydroxyalkanoic acids ranging from six to 16 carbons with 41% of the monomers being 3-hydroxyoctanoic acid and 3-hydroxyoctenoic acid. These results indicate that the beta-oxidation of plant fatty acids can generate a broad range of R-3-hydroxyacyl-CoA intermediates that can be used to synthesize MCL-PHAs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pattern recognition receptors (PRRs) are commonly known as sensor proteins crucial for the early detection of microbial or host-derived stress signals by innate immune cells. Interestingly, some PRRs are also expressed and functional in cells of the adaptive immune system. These receptors provide lymphocytes with innate sensing abilities; for example, B cells express Toll-like receptors, which are important for the humoral response. Strikingly, certain other NOD-like receptors are not only highly expressed in adaptive immune cells, but also exert functions related specifically to adaptive immune system pathways, such as regulating antigen presentation. In this review, we will focus particularly on the current understanding of PRR functions intrinsic to B and T lymphocytes; a developing aspect of PRR biology.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Delta(3),Delta(2)-enoyl CoA isomerase (ECI) is an enzyme that participates in the degradation of unsaturated fatty acids through the beta-oxidation cycle. Three genes encoding Delta(3),Delta(2)-enoyl CoA isomerases and named AtECI1, AtECI2 and AtECI3 have been identified in Arabidopsis thaliana. When expressed heterologously in Saccharomyces cerevisiae, all three ECI proteins were targeted to the peroxisomes and enabled the yeast Deltaeci1 mutant to degrade 10Z-heptadecenoic acid, demonstrating Delta(3),Delta(2)-enoyl CoA isomerase activity in vivo. Fusion proteins between yellow fluorescent protein and AtECI1 or AtECI2 were targeted to the peroxisomes in onion epidermal cells and Arabidopsis root cells, but a similar fusion protein with AtECI3 remained in the cytosol for both tissues. AtECI3 targeting to peroxisomes in S. cerevisiae was dependent on yeast PEX5, while expression of Arabidopsis PEX5 in yeast failed to target AtECI3 to peroxisomes. AtECI2 and AtECI3 are tandem duplicated genes and show a high level of amino acid conservation, except at the C-terminus; AtECI2 ends with the well conserved peroxisome targeting signal 1 (PTS1) terminal tripeptide PKL, while AtECI3 possesses a divergent HNL terminal tripeptide. Evolutionary analysis of ECI genes in plants revealed several independent duplication events, with duplications occurring in rice and Medicago truncatula, generating homologues with divergent C-termini and no recognizable PTS1. All plant ECI genes analyzed, including AtECI3, are under negative purifying selection, implying functionality of the cytosolic AtECI3. Analysis of the mammalian and fungal genomes failed to identify cytosolic variants of the Delta(3),Delta(2)-enoyl CoA isomerase, indicating that evolution of cytosolic Delta(3),Delta(2)-enoyl CoA isomerases is restricted to the plant kingdom

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES: Increasing evidence suggests that left ventricular remodeling is associated with a shift from fatty acid to glucose metabolism for energy production. The aim of this study was to determine whether left ventricular remodeling with and without late-onset heart failure after myocardial infarction is associated with regional changes in the expression of regulatory proteins of glucose or fatty acid metabolism. METHODS: Myocardial infarction was induced in rats by ligation of the left anterior descending coronary artery (LAD). In infarcted and sham-operated hearts the peri-infarction region (5-mm zone surrounding the region at risk), the interventricular septum and the right ventricular free wall were separated for analysis. RESULTS: At 8 and 20 weeks after LAD ligation, the peri-infarction region and the septum exhibited marked re-expression of atrial natriuretic factor [+252+/-37 and +1093+/-279%, respectively, in the septum (P<0.05)] and of alpha-smooth muscle actin [+34+/-10 and +43+/-14%, respectively, in the septum (P<0.05)]. At 8 weeks, when left ventricular hypertrophy was present without signs of heart failure, myocardial mRNA expression of glucose transporters (GLUT-1 and GLUT-4) was not altered, whereas mRNA expression of medium-chain acyl-CoA dehydrogenase (MCAD) was significantly reduced in the peri-infarction region (-25+/-7%; P<0.05). In hearts exhibiting heart failure 20 weeks after infarct-induction there was a change in all three ventricular regions of both mRNA and protein content of GLUT-1 [+72+/-28 and +121+/-15%, respectively, in the peri-infarction region (P<0.05)] and MCAD [-29+/-9 and -56+/-4%, respectively, in the peri-infarction region (P<0.05)]. CONCLUSION: In rats with large myocardial infarction, progression from compensated remodeling to overt heart failure is associated with upregulation of GLUT-1 and downregulation of MCAD in both the peri-infarction region and the septum.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND AIMS: Marked changes in metabolism, including liver steatosis and hypoglycemia, occur after partial hepatectomy. Peroxisome proliferator-activated receptor alpha (PPAR alpha) is a nuclear hormone receptor that is activated by fatty acids and involved in hepatic fatty acid metabolism and regeneration. Liver fatty acid binding protein (LFABP) is an abundant protein in liver cytosol whose expression is regulated by PPAR alpha. It is involved in fatty acid uptake and diffusion and in PPAR alpha signaling. The aim of this study was to investigate the expression of PPAR alpha and LFABP during liver regeneration. METHODS: Male Sprague-Dawley rats and male C57 Bl/6 mice were subjected to 2/3 hepatectomy and LFABP and PPAR alpha mRNA and protein levels were measured at different time points after surgery. The effect of partial hepatectomy was followed during 48 h in rats and 72 h in mice. RESULTS: PPAR alpha mRNA and protein levels were decreased 26 h after hepatectomy of rats. The LFABP mRNA and protein levels paralleled those of PPAR alpha and were also decreased 26 h after hepatectomy. In mice, the mRNA level was decreased after 36 and 72 h after hepatectomy. In this case, LFABP mRNA levels decreased more slowly after partial hepatectomy than in rats. CONCLUSIONS: A marked decrease in PPAR alpha expression may be important for changed gene expression, e.g. LFABP, and metabolic changes, such as hypoglycemia, during liver regeneration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The degradation of fatty acids having cis- or trans-unsaturated bond at an even carbon was analyzed in Saccharomyces cerevisiae by monitoring polyhydroxyalkanoate production in the peroxisome. Polyhydroxyalkanaote is synthesized by the polymerization of the beta-oxidation intermediates 3-hydroxy-acyl-CoAs via a bacterial polyhydroxyalkanoate synthase targeted to the peroxisome. The synthesis of polyhydroxyalkanoate in cells grown in media containing 10-cis-heptadecenoic acid was dependent on the presence of 2,4-dienoyl-CoA reductase activity as well as on Delta3,Delta2-enoyl-CoA isomerase activity. The synthesis of polyhydroxyalkanoate from 10-trans-heptadecenoic acid in mutants devoid of 2,4-dienoyl-CoA reductase revealed degradation of the trans fatty acid directly via the enoyl-CoA hydratase II activity of the multifunctional enzyme (MFE), although the level of polyhydroxyalkanoate was 10-25% to that of wild type cells. Polyhydroxyalkanoate produced from 10-trans-heptadecenoic acid in wild type cells showed substantial carbon flux through both a reductase-dependent and a direct MFE-dependent pathway. Flux through beta-oxidation was more severely reduced in mutants devoid of Delta3,Delta2-enoyl-CoA isomerase compared to mutants devoid of 2,4-dienoyl-CoA reductase. It is concluded that the intermediate 2-trans,4-trans-dienoyl-CoA is metabolized in vivo in yeast by both the enoyl-CoA hydratase II activity of the multifunctional protein and the 2,4-dienoyl-CoA reductase, and that the synthesis of the intermediate 3-trans-enoyl-CoA in the absence of the Delta3,Delta2-enoyl-CoA isomerase leads to the blockage of the direct MFE-dependent pathway in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We conducted a study of the patterns and dynamics of oxidized fatty acid derivatives (oxylipins) in potato leaves infected with the late-blight pathogen Phytophthora infestans. Two 18-carbon divinyl ether fatty acids, colneleic acid and colnelenic acid, accumulated during disease development. To date, there are no reports that such compounds have been detected in higher plants. The divinyl ether fatty acids accumulate more rapidly in potato cultivar Matilda (a cultivar with increased resistance to late blight) than in cultivar Bintje, a susceptible cultivar. Colnelenic acid reached levels of up to approximately 24 nmol (7 microgram) per g fresh weight of tissue in infected leaves. By contrast, levels of members of the jasmonic acid family did not change significantly during pathogenesis. The divinyl ethers also accumulated during the incompatible interaction of tobacco with tobacco mosaic virus. Colneleic and colnelenic acids were found to be inhibitory to P. infestans, suggesting a function in plant defense for divinyl ethers, which are unstable compounds rarely encountered in biological systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

SUMMARY Pulmonary Pulmonary disease is the primary cause of morbidity and mortality in cystic fibrosis patients (CF). Airways of CF patients are early colonized by various bacteriae, and an intense inflammatory response participates to airways destruction. Accumulation of neutrophils releasing proteolytic enzymes and free radicals induce progressive lung tissue destruction in CF. Among several inflammatory mediators implicated in this process, chemotactic factors such as leukotriene B4 (LTB4), product of arachidonic omega-6 polyunsaturated fatty acid (PUFA), plays an important role. Many anti-inflammatory therapies including corticosteroids, ibuprofen, macrolides, antioxidants and antiproteinases have been proposed in CF over the last 20 years. In complement to these various approaches, dietary supplementation with polyunsaturated fatty acids (PUFA) omega-3, known to favor the synthesis of less inflammatory leukotriene B5 (LTB5), could also represent a potential. therapy. The objective of this thesis was to assess the impact of this nutritional approach on several CF neutrophil functions. In addition, we have also examined the influence of this approach on various clinical parameters, to assess the feasibility of future studies specifically oriented towards clinical effects. To that endeavour, a high performance liquid chromatography method has been developed and validated, allowing the simultaneous determination of LTB4 and LTB5 produced by stimulated human polymorphonuclear leukocytes. This method was applied for the analysis of samples collected from CF patients taking part to a double-blind, randomized, crossover placebo-controlled clinical trial aiming at evaluating in these patients the immunomodulatary effect of a liquid supplementation enriched in omega-3 PUFA in CF. This study has shown that omega-3 PUFA are incorporated in CF neutrophil membranes and results into a modulation of leucotrienes B production, as testified by a three fold decrease in LTB4/LTB5 ratio after omega-3 PUFA supplementation. However, no clinical improvement was observed upon omega-3 supplementation, very reproducible results observed allow to be optimistic for a future larger trial focused on clinical outcomes. In conclusion, even if the results show that omega-3 PUFA are absorbed by CF patients and that the subsequent decrease in LTB4/LTB5 ratio suggests that in such conditions, neutrophils may produce less pro-inflammatory mediators, the clinical relevance of those observations remains to be demonstrated. Future multicentric studies focusing on clinical endpoints are still warranted to determine the importance of omega-3 PUFA in CF therapeutics. RÉSUMÉ Les patients atteints de mucoviscidose (patients CF) souffrent d'infections pulmonaires récurrentes. Celles-ci provoquent un afflux permanent de neutrophiles dans le poumon, neutrophiles qui libèrent des enzymes protéolytiques et des radicaux libres responsables à long terme de la destruction du tissu pulmonaire et, finalement, de l'insuffisance respiratoire, première cause de morbidité et de mortalité chez ces patients. La réponse inflammatoire ainsi induite peut être réduite par divers traitements anti-inflammatoires, tels que corticoïdes, anti-inflammatoires non stéroïdiens ou azithromycine. L'apport oral en acides gras polyinsaturés (AGPI) oméga-3 pourrait être une autre approche thérapeutique intéressante. Ces nutriments sont décrits comme possédant des propriétés anti-inflammatoires notamment en favorisant la synthèse d'eicosanoïdes pourvus d'une activité inflammatoire moindre par rapport à ceux issus d'une autre famille d'AGPI, les oméga-6. Ce travail de thèse a pour objectif premier d'évaluer l'impact de cette approche nutritionnelle sur diverses fonctions du neutrophile chez des patients CF. Cependant un intérêt de nature prospective a également été porté à certains paramètres cliniques, afin d'évaluer la faisabilité d'une future étude axée sur des effets cliniques. Pour ce faire, une méthode de chromatographie liquide à haute performance couplée à un spectromètre de masse a été développée et validée. Cette analyse devait permettre le dosage simultané de deux eicosanoïdes, le leucotriène B4 (LTB4) issu des AGPI oméga-6 et le leucotriène B5 (LTB5) issu des AGPI oméga-3. Puis, une étude clinique, double aveugle, randomisée, croisée sans période de washout, mais contrôlée avec un placebo, a été mise au point pour évaluer l'effet immunomodulateur de ces AGPI oméga-3 donnés sous la forme d'un liquide nutritif chez des patients CF. Les résultats de cette étude ont permis de démontrer l'absorption intestinale des AGPI oméga-3 par les patients. De plus, leur administration a permis de modifier la production de teucotriène B. En effet, le ratio LTB4/LTB5 a été diminué de près de trois fois sous liquide nutritif enrichi en AGPI oméga-3. Enfin aucune différence n'a pu être notée pour les paramètres cliniques; toutefois les résultats reproductibles observés permettent d'envisager qu'une future étude multicentrique axée sur des effets cliniques est faisable. En conclusion, la modification de la composition en AGPI membranaires du neutrophile observée durant cette étude laisse penser que ces nutriments sont absorbés par les patients CF. La modulation de la production en LTBs qui en découle permet d'envisager un potentiel effet anti-inflammatoire. Toutefois, la relevance clinique de ces observations restent à être démontrée. A l'heure actuelle, une étude multicentrique, focalisée sur des paramètres cliniques, est nécessaire avant de pouvoir se prononcer sur l'utilisation des AGPI oméga-3 chez les patients CF.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fatty acids distribution and stable isotope ratios (bulk delta(13)C. delta(15)N and delta(13)C of individual fatty acids) of organic residues from 30 potsherds have been used to get further insights into the diet at the Late Neolithic (3384-3370 BC) site of Arbon Bleiche 3. Switzerland. The results are compared with modern equivalents of animal and vegetable fats, which may have been consumed ill a mixed ecology community having agrarian, breeding, shepherd, gathering, hunting, and fishing activities. The used combined chemical and isotopic approach provides valuable information to complement archaeological indirect evidence about the dietary trends obtained from the analysis of faunal and plant remains. The small variations of the delta(13)C and delta(15)N values within the range expected for degraded animal and plant tissues, is consistent with the archaeological evidence of animals, whose subsistence was mainly based on C(3) plants. The overall fatty acid composition and the stable carbon isotopic compositions of palmitic, stearic and oleic acids of the organic residues indicate that the studied Arbon Bleiche 3 sherds contain fat residues of plant and animal origin, most likely ruminant (bovine and ovine). In several vessels the presence of milk residues provides direct evidence for dairying during the late Neolithic in central Europe. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The flux of fatty acids toward beta-oxidation was analyzed in Saccharomyces cerevisiae by monitoring polyhydroxyalkanoate synthesis in the peroxisome from the polymerization, by a bacterial polyhydroxyalkanoate synthase, of the beta-oxidation intermediates 3-hydroxyacyl-CoAs. Synthesis of polyhydroxyalkanoate was dependent on the beta-oxidation enzymes acyl-CoA oxidase and enoyl-CoA hydratase/3-hydroxyacyl-CoA dehydrogenase multifunctional protein, which are involved in generating 3-hydroxyacyl-CoAs, and on the peroxin PEX5, which is involved in the import of proteins into the peroxisome. In wild type cells grown in media containing fatty acids, the polyhydroxyalkanoate monomer composition was largely influenced by the nature of the external fatty acid, such that even-chain monomers are generated from oleic acid and odd-chain monomers are generated from heptadecenoic acid. In contrast, polyhydroxyalkanoate containing predominantly 3-hydroxyoctanoate, 3-hydroxydecanoate, and 3-hydroxydodecanoate was synthesized in a mutant deficient in the peroxisomal 3-ketothiolase (fox3 Delta 0) growing either on oleic acid or heptadecenoic acid as well as in wild type and fox3 Delta 0 mutants grown on glucose or raffinose, indicating that 3-hydroxyacyl-CoAs used for polyhydroxyalkanoate synthesis were generated from the degradation of intracellular short- and medium-chain fatty acids by the beta-oxidation cycle. Inhibition of fatty acid biosynthesis with cerulenin blocked the synthesis of polyhydroxyalkanoate from intracellular fatty acids but still enabled the use of extracellular fatty acids for polymer production. Mutants affected in the synthesis of lipoic acid showed normal polyhydroxyalkanoate synthesis capacity. Together, these results uncovered the existence of a substantial futile cycle whereby short- and medium-chain intermediates of the cytoplasmic fatty acid biosynthetic pathway are directed toward the peroxisomal beta-oxidation pathway.