77 resultados para OPIOID MODULATION
Resumo:
Thymocytes and class I major histocompatibility complex (MHC)-restricted cytotoxic T lymphocytes express predominantly heterodimeric alpha/beta CD8. By interacting with non-polymorphic regions of MHC class I molecules CD8 can mediate adhesion or by binding the same MHC molecules that interact with the T-cell antigen receptor (TCR) function as coreceptor in TCR-ligand binding and T-cell activation. Using TCR photoaffinity labelling with a soluble, monomeric photoreactive H-2Kd-peptide derivative complex, we report here that the avidity of TCR-ligand interactions on cloned cytotoxic T cells is very greatly strengthened by CD8. This is primarily explained by coordinate binding of ligand molecules by CD8 and TCR, because substitution of Asp 227 of Kd with Lys severely impaired the TCR-ligand binding on CD8+, but not CD8- cells. Kinetic studies on CD8+ and CD8- cells further showed that CD8 imposes distinct dynamics and a remarkable temperature dependence on TCR-ligand interactions. We propose that the ability of CD8 to act as coreceptor can be modulated by CD8-TCR interactions.
Resumo:
Cytotoxic T lymphocyte-associated antigen-4 (CTLA-4; CD152) is of pivotal importance for self-tolerance, with deficiency or unfavorable polymorphisms leading to autoimmune disease. Tolerance to self-antigens is achieved through thymic deletion of highly autoreactive conventional T (Tconv) cells and generation of FoxP3(+) regulatory T (Treg) cells. The main costimulatory molecule, CD28, augments the negative selection of Tconv cells and promotes the generation of FoxP3(+) Treg cells. The role of its antagonistic homolog CTLA-4, however, remains a topic of debate. To address this topic, we investigated the thymic development of T cells in the presence and absence of CTLA-4 in a T-cell receptor (TCR) transgenic mouse model specific for the myelin basic protein peptide Ac1-9. We reveal that CTLA-4 is expressed in the corticomedullary region of the thymus. Its absence alters the response of CD4(+)CD8(-) thymocytes to self-antigen recognition, which affects the quantity of the Treg cells generated and broadens the repertoire of peripheral Tconv cells. T-cell repertoire alteration after deletion of CTLA-4 results from changes in TCR Vα and Jα segment selection as well as CDR3α composition in Tconv and Treg cells. CTLA-4, therefore, regulates the early development of self-reactive T cells in the thymus and plays a key role in central tolerance.
Resumo:
The mu- (MOR) and kappa- (KOR) opioid receptors have been implicated in the regulation of homeostasis of non-neuronal cells, such as keratinocytes, and sensations like pain and chronic pruritus. Therefore, we have studied the phenotype of skin after deletion of MOR and KOR. In addition, we applied a dry skin model in these knockout mice and compared the different mice before and after induction of the dermatitis in terms of epidermal thickness, epidermal peripheral nerve ending distribution, dermal inflammatory infiltrate (mast cells, CD4 positive lymphocytes), and scratching behavior. MOR knockout mice reveal as phenotype a significantly thinner epidermis and a higher density of epidermal fiber staining by protein gene product 9.5 than the wild-type counterparts. Epidermal hypertrophy, induced by the dry skin dermatitis, was significantly less developed in MOR knockout than in wild-type mice. Neither mast cells nor CD4 T(h)-lymphocytes are involved in the changes of epidermal nerve endings and epidermal homeostasis. Finally, behavior experiments revealed that MOR and KOR knockout mice scratch less after induction of dry skin dermatitis than wild-type mice. These results indicate that MOR and KOR are important in skin homeostasis, epidermal nerve fiber regulation, and pathophysiology of itching.
Resumo:
The TNF family member receptor activator for NF-κB ligand (RANKL) and its receptors RANK and osteoprotegerin are key regulators of bone remodeling but also influence cellular functions of tumor and immune effector cells. In this work, we studied the involvement of RANK-RANKL interaction in NK cell-mediated immunosurveillance of acute myeloid leukemia (AML). Substantial levels of RANKL were found to be expressed on leukemia cells in 53 of 78 (68%) investigated patients. Signaling via RANKL into the leukemia cells stimulated their metabolic activity and induced the release of cytokines involved in AML pathophysiology. In addition, the immunomodulatory factors released by AML cells upon RANKL signaling impaired the anti-leukemia reactivity of NK cells and induced RANK expression, and NK cells of AML patients displayed significantly upregulated RANK expression compared with healthy controls. Treatment of AML cells with the clinically available RANKL Ab Denosumab resulted in enhanced NK cell anti-leukemia reactivity. This was due to both blockade of the release of NK-inhibitory factors by AML cells and prevention of RANK signaling into NK cells. The latter was found to directly impair NK anti-leukemia reactivity with a more pronounced effect on IFN-γ production compared with cytotoxicity. Together, our data unravel a previously unknown function of the RANK-RANKL molecule system in AML pathophysiology as well as NK cell function and suggest that neutralization of RANKL with therapeutic Abs may serve to reinforce NK cell reactivity in leukemia patients.
Resumo:
The exchange of information during interactions of T cells with dendritic cells, B cells or other T cells regulates the course of T, B and DC-cell activation and their differentiation into effector cells. The tumor necrosis factor superfamily member LIGHT (homologous to lymphotoxin, exhibits inducible expression and competes with HSV glycoprotein D for binding to herpesvirus entry mediator, a receptor expressed on T lymphocytes) is transiently expressed upon T cell activation and modulates CD8 T cell-mediated alloreactive responses upon herpes virus entry mediator (HVEM) and lymphotoxin β receptor (LTβR) engagement. LIGHT-deficient mice, or WT mice treated with LIGHT-targeting decoy receptors HVEM-Ig, LTβR-Ig or sDcR3-Ig, exhibit prolonged graft survival compared to untreated controls, suggesting that LIGHT modulates the course and severity of graft rejection. Therefore, targeting the interaction of LIGHT with HVEM and/or LTβR using recombinant soluble decoy receptors or monoclonal antibodies represent an innovative therapeutic strategy for the prevention and treatment of allograft rejection and for the promotion of donor-specific tolerance.
Resumo:
The human immunodeficiency virus type 1 (HIV-1) Vpu protein interacts with CD4 within the endoplasmic reticula of infected cells and targets CD4 for degradation through interaction with beta-TrCP1. Mammals possess a homologue of beta-TrCP1, HOS, which is also named beta-TrCP2. We show by coimmunoprecipitation experiments that beta-TrCP2 binds Vpu and is able to induce CD4 down-modulation as efficiently as beta-TrCP1. In two different cell lines, HeLa CD4+ and Jurkat, Vpu-mediated CD4 down-modulation could not be reversed through the individual silencing of endogenous beta-TrCP1 or beta-TrCP2 but instead required the two genes to be silenced simultaneously.
Resumo:
Au regard des agressions environnementales constantes que la peau doit endurer, l'équilibre fragile entre l'expression et la répression des gènes épidermiques, nécessaire à la différentiation et la prolifération des kératinocytes, pourrait facilement être perturbé en l'absence des mécanismes de stabilisation robustes. La présence d'un système neuroendocrinien local est donc importante afin de coordonner une réponse aux éventuelles irritations. En effet, l'expression de plusieurs neurohormones, des neurotransmetteurs et des neuropeptides, y compris des dérivés pro-opiomélanocortine comme la ß-endorphine et [Met5]-enképhaline, ainsi que l'expression du récepteur 8-opioïde (DOR) a été démontré dans la peau. Cependant, les mécanismes moléculaires par lesquels ils modulent la fonction des kératinocytes sont mal connus. Le présent travail démontre que la voie de signalisation DOR active spécifiquement la voie ERK 1/2 MAPK dans les lignées cellulaires de kératinocytes humains, inhibant la prolifération des cellules et entraîne une diminution de l'épaisseur épidermique dans un modèle organotypique de peau. De plus, l'expression de DOR retarde nettement l'induction de la kératine 10 (KRT 10) et la kératine 1 (KRT 1) dans une modèle 2D de différentiation in vitro, et supprime l'induction de KRT 10 dans un modèle organotypique de peau. Ceci est accompagné de la dérégulation de l'involucrine (IVL), la loricrine (LOR) et la fïlaggrin (FLG), résultant en une induction nettement réduite de leur expression lors de l'initiation de la différentiation in vitro. De plus, POU2F3 a été identifié comme un facteur de transcription régulant les gènes de différentiation des kératinocytes modulés par DOR. Il a été démontré que la régulation négative de POU2F3 via la voie DOR-ERK affecte les principaux aspects de la fonction des kératinocytes. Toutefois, il est évident que des facteurs supplémentaires influencent la fonctionnalité de la voie DOR elle-même. Le calcium et le contact cellule-cellule augmentent la quantité des récepteurs à la surface cellulaire des kératinocytes. Les kératinocytes dont les récepteurs sont internalisés ne répondent pas de la même manière que ceux possédant des récepteurs fonctionnels localisée à la membrane. Ce travail suggère que lors de signaux intrinsèques ou extrinsèques spécifiques, les kératinocytes sont capable de répondre via le système opioïdergique neuro-epidermique. Cette réponse doit être spatialement et temporairement contrôlée afin d'éviter un déséquilibre de l'homéostasie épidermique et un retard de cicatrisation. La compréhension de ce processus très complexe pourrait permettre à terme le développement de meilleurs traitements des affections cutanées pathologiques. En complément des études précédentes sur des souris DOR-défïcientes, ces données suggèrent que l'activation de DOR dans les kératinocytes humains influence la morphogenèse et l'homéostasie de l'épiderme, et pourrait jouer un rôle lors du processus de cicatrisation. - In view of the constant environmental assaults that the skin must endure, the delicate balance of an eloquent sequence of epidermal gene expression and repression, that is required for appropriate differentiation and proliferation of keratinocytes, might easily become derailed in the absence of robust stabilizing mechanisms. The presence of a local neuroendocrine system is thereby important to coordinate a response towards irritations. In fact, the expression of several neurohormones, neurotransmitters, and neuropeptides, including proopiomelanocortin derivatives, such as ß- endorphin and [Met5]-enkephalin has been shown in skin, as well as expression of the 6-opioid receptor (DOR). However, there is currently a lack of understanding of the molecular mechanisms by which their signalling modulates keratinocyte function. The present work demonstrates that DOR signalling specifically activates the ERK 1/2 MAPK pathway in human keratinocyte cell lines. This activation inhibits cell proliferation, resulting in decreased epidermal thickness in an organotypic skin model. Furthermore, DOR expression markedly delays induction of keratin intermediate filament Keratin 10 (KRT 10) and KRT 1 during in vitro differentiation, and abolishes the induction of KRT 10 in the organotypic skin model. This is accompanied by deregulation of involucrin (IVL), loricrin (LOR), and filaggrin (FLG), illustrated by a markedly reduced induction of their expression upon initiation of differentiation in vitro. Additionally, POU2F3 was identified as a transcription factor mediating the DOR induced regulation of keratinocyte differentiation related genes. It was revealed that DOR-mediated ERK-dependent downregulation of this factor affects key aspects of keratinocyte function. However, it is evident that additional triggers influence the functionality of the DOR itself. Calcium at concentrations above 0.1 mM and cell-cell contact both enhance the presence of receptor molecules on the keratinocytes cell surface. Keratinocytes with internalized receptor do not respond to DOR ligands in the same way as keratinocytes with a functional membrane localized receptor.
Resumo:
Astrocytes communicate with synapses by means of intracellular calcium ([Ca(2+)](i)) elevations, but local calcium dynamics in astrocytic processes have never been thoroughly investigated. By taking advantage of high-resolution two-photon microscopy, we identify the characteristics of local astrocyte calcium activity in the adult mouse hippocampus. Astrocytic processes showed intense activity, triggered by physiological transmission at neighboring synapses. They encoded synchronous synaptic events generated by sparse action potentials into robust regional (∼12 μm) [Ca(2+)](i) elevations. Unexpectedly, they also sensed spontaneous synaptic events, producing highly confined (∼4 μm), fast (millisecond-scale) miniature Ca(2+) responses. This Ca(2+) activity in astrocytic processes is generated through GTP- and inositol-1,4,5-trisphosphate-dependent signaling and is relevant for basal synaptic function. Thus, buffering astrocyte [Ca(2+)](i) or blocking a receptor mediating local astrocyte Ca(2+) signals decreased synaptic transmission reliability in minimal stimulation experiments. These data provide direct evidence that astrocytes are integrated in local synaptic functioning in adult brain.
Resumo:
La douleur neuropathique est une forme de douleur chronique apparaissant suite à des lésions du système nerveux somato-sensoriel. Caractérisée par une plasticité neuronale inadapté, elle est très souvent intense, invalidante, associe des symptômes comme l'allodynie ou l' hyperalgésie et reste difficile à traiter avec les agents thérapeutiques actuels. Le thème de mon travail de thèse se concentre sur des mécanismes moléculaires de modulation des canaux sodiques voltage-dépendants suite à une lésion du nerf périphérique. Dans l'article présenté en annexe, j'ai focalisé mon travail sur une protéine, Nedd4-2, qui est une ligase ubiquitine. Elle a pour rôle de réguler et d'internaliser dans la cellule des protéines membranaires dont les canaux sodiques. Suite aux lésions du système nerveux périphérique, il existe une hyperexcitabilité neuronale engendrée notamment par un surplus et une dysrégulation des canaux sodiques à la membrane cellulaire. Dans 1 'hypothèse que l'ubiquitine ligase Nedd4-2 soit présente dans les neurones sensitifs primaires et ait un rôle dans la régulation des canaux sodiques, nous avons identifié cette protéine dans les neurones nociceptifs primaires du rat. En utilisant des techniques de Western Blot et d'immunohistochimie, j'ai trouvé que Nedd4-2 est présente dans presque 50% des neurones du ganglion spinal et ces neurones sont principalement des neurones nociceptifs. Dans un modèle expérimental de douleur neuropathique (SN I, pour spared nerve injury), Nedd4-2 se retrouve significativement diminuée dans le tissu du ganglion spinal. J'ai également investigué 1' expression de 2 isoformes des canaux sodiques connues pour leur implication dans la douleur, Navl.7 et Navl.8, et ces 2 isoformes se retrouvent dans les mêmes neurones que Nedd4-2. La caractérisation détaillée est décrite dans le manuscrit: «Neuronal expression of the ubiquitin ligase Nedd4-2 in rat dorsal root ganglia: modulation in the SNI model of neuropathic pain; Cachemaille M, Laedermann CJ, Pertin M, Abriel H, Gasselin RD, Decosterd 1.» Les résultats obtenus indiquent que Nedd4-2, en étant downrégulé après une lésion nerveuse, pourrait ainsi contribuer à une augmentation des canaux sodiques fonctionnels à la membrane. Ainsi Nedd4-2 pourrait être proposée comme cible thérapeutique de manière alternative aux bloqueurs de canaux sodiques. Ce travail a permis l'initiation d'autres expériences. J'ai contribué activement à la construction de vecteurs viraux type adéno-associé recombinant (rAA V2/6) et surexprimé la protéine in vivo dans les ganglions spinaux. Cette partie de mon travail se trouve intégrée dans d'autres travaux de mon laboratoire d'accueil qui a pu démontrer les effets fonctionnels de cette approche sur les courants sodiques enregistrés par électrophysiologie et une diminution de la douleur neuropathique chez la souris. - Abstract-Neuronal hyperexcitability following peripheral nerve lesions may stem from altered activity of voltagegated sodium channels (VGSCs), which gives rise toallodynia or hyperalgesia. In vitro, the ubiquitin ligase Nedd4-2 is a negative regulator of VGSC a-subunits (Nav), in particular Nav1.7, a key actor in nociceptor excitability. We therefore studied Nedd4-2 in rat nociceptors, its co-expression with Nav1.7 and Nav1.8, and its regulation in pathology. Adult rats were submitted to the spared nerve injury (SNI) model of neuropathic pain or injected with complete Freund's adjuvant (CFA), a model of inflammatory pain. L4 dorsal root ganglia (DRG) were analyzed in shamoperated animals, seven days after SNI and 48 h after CFA with immunofluorescence and Western blot. We observed Nedd4-2 expression in almost 50% of DRG neurons, mostly small and medium-sized. A preponderant localization is found in the non-peptidergic sub-population. Additionally, 55.7± 2.7% and 55.0 ±3.6% of Nedd4-2-positive cells are co-labeled with Nav1.7 and Nav1.8 respectively. SNI significantly decreases the proportion of Nedd4-2-positive neurons from 45.9± 1.9% to 33.5± 0.7% (p < 0.01) and the total Nedd4-2 protein to 44%± 0.13% of its basal level (p <0.01, n = 4 animals in each group, mean± SEM). In contrast, no change in Nedd4-2 was found after peripheral inflammation induced by CFA. These results indicate that Nedd4-2 is present in nociceptive neurons, is downregulated after peripheral nerve injury, and might therefore contribute to the dysregulation of Navs involved in the hyperexcitability associated with peripheral nerve injuries.
Resumo:
We have investigated the effect of extracellular proteases on the amiloride-sensitive Na+ current (INa) in Xenopus oocytes expressing the three subunits alpha, beta, and gamma of the rat or Xenopus epithelial Na+ channel (ENaC). Low concentrations of trypsin (2 microg/ml) induced a large increase of INa within a few minutes, an effect that was fully prevented by soybean trypsin inhibitor, but not by amiloride. A similar effect was observed with chymotrypsin, but not with kallikrein. The trypsin-induced increase of INa was observed with Xenopus and rat ENaC, and was very large (approximately 20-fold) with the channel obtained by coexpression of the alpha subunit of Xenopus ENaC with the beta and gamma subunits of rat ENaC. The effect of trypsin was selective for ENaC, as shown by the absence of effect on the current due to expression of the K+ channel ROMK2. The effect of trypsin was not prevented by intracellular injection of EGTA nor by pretreatment with GTP-gammaS, suggesting that this effect was not mediated by G proteins. Measurement of the channel protein expression at the oocyte surface by antibody binding to a FLAG epitope showed that the effect of trypsin was not accompanied by an increase in the channel protein density, indicating that proteolysis modified the activity of the channel present at the oocyte surface rather than the cell surface expression. At the single channel level, in the cell-attached mode, more active channels were observed in the patch when trypsin was present in the pipette, while no change in channel activity could be detected when trypsin was added to the bath solution around the patch pipette. We conclude that extracellular proteases are able to increase the open probability of the epithelial sodium channel by an effect that does not occur through activation of a G protein-coupled receptor, but rather through proteolysis of a protein that is either a constitutive part of the channel itself or closely associated with it.
Resumo:
The TNF family ligand ectodysplasin A (EDA) regulates the induction, morphogenesis and/or maintenance of skin-derived structures such as teeth, hair, sweat glands and several other glands. Deficiencies in the EDA - EDA receptor (EDAR) signalling pathway cause hypohidrotic ectodermal dysplasia (HED). This syndrome is characterized by the absence or malformation of several skin-derived appendages resulting in hypotrychosis, hypodontia, heat-intolerance, dry skin and dry eyes, susceptibility to airways infections and crusting of various secretions. The EDA-EDAR system is an important effector of canonical Wnt signalling in developing skin appendages. It functions by stimulating NF-κB-mediated transcription of effectors or inhibitors of the Wnt, Sonic hedgehog (SHH), fibroblast growth factor (FGF) and transforming growth factor beta (TGFβ) pathways that regulate interactions within or between epithelial and mesenchymal cells and tissues. In animal models of Eda-deficiency, soluble EDAR agonists can precisely correct clinically relevant symptoms with low side effects even at high agonist doses, indicating that efficient negative feedback signals occur in treated tissues. Hijacking of the placental antibody transport system can help deliver active molecules to developing foetuses in a timely manner. EDAR agonists may serve to treat certain forms of ectodermal dysplasia.
Resumo:
Résumé large public: Une altération localisée du métabolisme du glucose, le substrat énergétique préférentiellement utilisé dans le cerveau, est un trait caractéristique précoce de la maladie d'Alzheimer (MA). Il est maintenant largement admis que le beta-amyloïde, la neuroinflammation et le stress oxydatif participent au développement de la MA. Cependant les mécanismes cellulaires de la pathogenèse restent à identifier. Le métabolisme cérébral a ceci de remarquable qu'il repose sur la coopération entre deux types cellulaires, ainsi les astrocytes et les neurones constituent une unité métabolique. Les astrocytes sont notamment responsables de fournir aux neurones des substrats énergétiques, ainsi que des précurseurs du glutathion pour la défense contre le stress oxydatif. Ces fonctions astrocytaires sont essentielles au bon fonctionnement et à la survie neuronale; par conséquent, une altération de ces fonctions astrocytaires pourrait participer au développement de certaines maladies cérébrales. Le but de ce travail est, dans un premier temps, d'explorer les effets de médiateurs de la neuroinflammation (les cytokines pro-inflammatoires) et du peptide beta-amyloïde sur le métabolisme des astrocytes corticaux, en se focalisant sur les éléments en lien avec le métabolisme énergétique et le stress oxydatif. Puis, dans un second temps, de caractériser les conséquences pour les neurones des modifications du métabolisme astrocytaire induites par ces substances. Les résultats obtenus ici montrent que les cytokines pro-inflammatoires et le beta-amyloïde induisent une profonde altération du métabolisme astrocytaire, selon deux profils distincts. Les cytokines pro-inflammatoires, particulièrement en combinaison, agissent comme « découpleurs » du métabolisme énergétique du glucose, en diminuant l'apport potentiel de substrats énergétiques aux neurones. En plus de son effet propre, le peptide beta-amyloïde potentialise les effets des cytokines pro-inflammatoires. Or, dans le cerveau de patients atteints de la MA, les astrocytes sont exposés simultanément à ces deux types de substances. Les deux types de substances ont un effet ambivalent en termes de stress oxydatif. Ils induisent à la fois une augmentation de la libération de glutathion (potentiellement protecteur pour les neurones voisins) et la production d'espèces réactives de l'oxygène (potentiellement toxiques). Etant donné l'importance de la coopération entre astrocytes et neurones, ces modulations du métabolisme astrocytaire pourraient donc avoir un retentissement majeur sur les cellules environnantes, et en particulier sur la fonction et la survie neuronale. Résumé Les astrocytes et les neurones constituent une unité métabolique. Les astrocytes sont notamment responsables de fournir aux neurones des substrats énergétiques, tels que le lactate, ainsi que des précurseurs du glutathion pour la défense contre le stress oxydatif. Une altération localisée du métabolisme du glucose, le substrat énergétique préférentiellement utilisé dans le cerveau, est un trait caractéristique, précoce, de la maladie d'Alzheimer (MA). Il est maintenant largement admis que le beta-amyloïde, la neuroinflammation et le stress oxydatif participent au développement de la MA. Cependant, les mécanismes cellulaires de la pathogenèse restent à identifier. Le but de ce travail est d'explorer les effets des cytokines pro-inflammatoires (Il-1 ß et TNFα) et du beta-amyloïde (Aß) sur le métabolisme du glucose des astrocytes corticaux en culture primaire ainsi que de caractériser les conséquences, pour la viabilité des neurones voisins, des modifications du métabolisme astrocytaire induites par ces substances. Les résultats obtenus montrent que les cytokines pro-inflammatoires et le beta-amyloïde induisent une profonde altération du métabolisme astrocytaire, selon deux profils distincts. Les cytokines pro-inflammatoires, particulièrement en combinaison, agissent comme « découpleurs » du métabolisme glycolytique astrocytaire. Après 48 heures, le traitement avec TNFα et Il-lß cause une augmentation de la capture de glucose et de son métabolisme dans la voie des pentoses phosphates et dans le cycle de Krebs. A l'inverse, il cause une diminution de la libération de lactate et des stocks cellulaires de glycogène. En combinaison avec les cytokines tel qu'in vivo dans les cerveaux de patients atteints de MA, le peptide betaamyloïde potentialise les effets décrits ci-dessus. Isolément, le Aß cause une augmentation coordonnée de la capture de glucose et de toutes les voies de son métabolisme (libération de lactate, glycogenèse, voie des pentoses phosphate et cycle de Krebs). Les traitements altèrent peu les taux de glutathion intracellulaires, par contre ils augmentent massivement la libération de glutathion dans le milieu extracellulaire. A l'inverse, les deux types de traitements augmentent la production intracellulaire d'espèces réactives de l'oxygène (ROS). De plus, les cytokines pro-inflammatoires en combinaison augmentent massivement la production des ROS dans l'espace extracellulaire. Afin de caractériser l'impact de ces altérations métaboliques sur la viabilité des neurones environnants, un modèle de co-culture et des milieux conditionnés astrocytaires ont été utilisés. Les résultats montrent qu'en l'absence d'une source exogène d'antioxydants, la présence d'astrocytes favorise la viabilité neuronale ainsi que leur défense contre le stress oxydatif. Cette propriété n'est cependant pas modulée par les différents traitements. D'autre part, la présence d'astrocytes, et non de milieu conditionné, protège les neurones contre l'excitotoxicité due au glutamate. Les astrocytes prétraités (aussi bien avec le beta-amyloïde qu'avec les cytokines pro-inflammatoires) perdent cette propriété. Cet élément suggère que la perturbation du métabolisme astrocytaire causé par les cytokines pro-inflammatoires ou le beta-amyloïde pourrait participer à l'atteinte de la viabilité neuronale associée à certaines pathologies neurodégénératives.
Resumo:
Problem solving (including insight, divergent thinking) seems to rely on the right hemisphere (RH). These functions are difficult to assess behaviorally. We propose anagram resolution as a suitable paradigm. University students (n=32) performed three tachistoscopic lateralized visual half-field experiments (stimulus presentation 150ms). In Experiment 1, participants recalled four-letter strings. Subsequently, participants provided solutions for four-letter anagrams (one solution in Experiment 2; two solutions in Experiment 3). Additionally, participants completed a schizotypy questionnaire (O-LIFE). Results showed a right visual field advantage in Experiment 1 and 2, but no visual field advantage in Experiment 3. In Experiment 1, increasing positive schizotypy associated with a RH performance shift. Problem solving seems to require increasingly the RH when facing several rather than one solution. This result supports previous studies on the RH's role in remote associative, metaphor and discourse processing. The more complex language requirements, the less personality traits seem to matter.
Resumo:
Phasic activation of dopaminergic neurons is associated with reward-predicting cues and supports learning during behavioral adaptation. While noncontingent activation of dopaminergic neurons in the ventral tegmental are (VTA) is sufficient for passive behavioral conditioning, it remains unknown whether the phasic dopaminergic signal is truly reinforcing. In this study, we first targeted the expression of channelrhodopsin-2 to dopaminergic neurons of the VTA and optimized optogenetically evoked dopamine transients. Second, we showed that phasic activation of dopaminergic neurons in freely moving mice causally enhances positive reinforcing actions in a food-seeking operant task. Interestingly, such effect was not found in the absence of food reward. We further found that phasic activation of dopaminergic neurons is sufficient to reactivate previously extinguished food-seeking behavior in the absence of external cues. This was also confirmed using a single-session reversal paradigm. Collectively, these data suggest that activation of dopaminergic neurons facilitates the development of positive reinforcement during reward-seeking and behavioral flexibility.
Resumo:
Résumé Les canaux ioniques ASICs (acid-sensing ion channels) appartiennent à la famille des canaux ENaC/Degenerin. Pour l'instant, quatre gènes (1 à 4) ont été clonés dont certains présentent des variants d'épissage. Leur activation par une acidification rapide du milieu extracellulaire génère un courant entrant transitoire essentiellement sodique accompagné pour certains types d'ASICs d'une phase soutenue. Les ASICs sont exprimés dans le système nerveux, central (SNC) et périphérique (SNP). On leur attribue un rôle dans l'apprentissage, la mémoire et l'ischémie cérébrale au niveau central ainsi que dans la nociception (douleur aiguë et inflammatoire) et la méchanotransduction au niveau périphérique. Toutefois, les données sont parfois contradictoires. Certaines études suggèrent qu'ils sont des senseurs primordiaux impliqués dans la détection de l'acidification et la douleur. D'autres études suggèrent plutôt qu'ils ont un rôle modulateur inhibiteur dans la douleur. De plus, le fait que leur activation génère majoritairement un courant transitoire alors que les fibres nerveuses impliquées dans la douleur répondent à un stimulus nocif avec une adaptation lente suggère que leurs propriétés doivent être modulés par des molécules endogènes. Dans une première partie de ma thèse, nous avons abordé la question de l'expression fonctionnelle des ASICs dans les neurones sensoriels primaires afférents du rat adulte pour clarifier le rôle des ASICs dans les neurones sensoriels. Nous avons caractérisé leurs propriétés biophysiques et pharmacologiques par la technique du patch-clamp en configuration « whole-cell ». Nous avons pu démontrer que près de 60% des neurones sensoriels de petit diamètre expriment des courants ASICs. Nous avons mis en évidence trois types de courant ASIC dans ces neurones. Les types 1 et 3 ont des propriétés compatibles avec un rôle de senseur du pH alors que le type 2 est majoritairement activé par des pH inférieurs à pH6. Le type 1 est médié par des homomers de la sous-unité ASIC1 a qui sont perméables aux Ca2+. Nous avons étudié leur co-expression avec des marqueurs des nocicepteurs ainsi que la possibilité d'induire une activité neuronale suite à une acidification qui soit dépendante des ASICs. Le but était d'associer un type de courant ASIC avec une fonction potentielle dans les neurones sensoriels. Une majorité des neurones exprimant les courants ASIC co-expriment des marqueurs des nocicepteurs. Toutefois, une plus grande proportion des neurones exprimant le type 1 n'est pas associée à la nociception par rapport aux types 2 et 3. Nous avons montré qu'il est possible d'induire des potentiels d'actions suite à une acidification. La probabilité d'induction est proportionnelle à la densité des courants ASIC et à l'acidité de la stimulation. Puis, nous avons utilisé cette classification comme un outil pour appréhender les potentielles modulations fonctionnelles des ASICs dans un model de neuropathie (spared nerve injury). Cette approche fut complétée par des expériences de «quantitative RT-PCR ». En situation de neuropathie, les courants ASIC sont dramatiquement changés au niveau de leur expression fonctionnelle et transcriptionnelle dans les neurones lésés ainsi que non-lésés. Dans une deuxième partie de ma thèse, suite au test de différentes substances sécrétées lors de l'inflammation et l'ischémie sur les propriétés des ASICs, nous avons caractérisé en détail la modulation des propriétés des courants ASICs notamment ASIC1 par les sérines protéases dans des systèmes d'expression recombinants ainsi que dans des neurones d'hippocampe. Nous avons montré que l'exposition aux sérine-protéases décale la dépendance au pH de l'activation ainsi que la « steady-state inactivation »des ASICs -1a et -1b vers des valeurs plus acidiques. Ainsi, l'exposition aux serine protéases conduit à une diminution du courant quand l'acidification a lieu à partir d'un pH7.4 et conduit à une augmentation du courant quand l'acidification alleu à partir d'un pH7. Nous avons aussi montré que cette régulation a lieu des les neurones d'hippocampe. Nos résultats dans les neurones sensoriels suggèrent que certains courants ASICs sont impliqués dans la transduction de l'acidification et de la douleur ainsi que dans une des phases du processus conduisant à la neuropathie. Une partie des courants de type 1 perméables au Ca 2+ peuvent être impliqués dans la neurosécrétion. La modulation par les sérines protéases pourrait expliquer qu'en situation d'acidose les canaux ASICs soient toujours activables. Résumé grand publique Les neurones sont les principales cellules du système nerveux. Le système nerveux est formé par le système nerveux central - principalement le cerveau, le cervelet et la moelle épinière - et le système nerveux périphérique -principalement les nerfs et les neurones sensoriels. Grâce à leur nombreux "bras" (les neurites), les neurones sont connectés entre eux, formant un véritable réseau de communication qui s'étend dans tout le corps. L'information se propage sous forme d'un phénomène électrique, l'influx nerveux (ou potentiels d'actions). A la base des phénomènes électriques dans les neurones il y a ce que l'on appelle les canaux ioniques. Un canal ionique est une sorte de tunnel qui traverse l'enveloppe qui entoure les cellules (la membrane) et par lequel passent les ions. La plupart de ces canaux sont normalement fermés et nécessitent d'être activés pour s'ouvrire et générer un influx nerveux. Les canaux ASICs sont activés par l'acidification et sont exprimés dans tout le système nerveux. Cette acidification a lieu notamment lors d'une attaque cérébrale (ischémie cérébrale) ou lors de l'inflammation. Les expériences sur les animaux ont montré que les canaux ASICs avaient entre autre un rôle dans la mort des neurones lors d'une attaque cérébrale et dans la douleur inflammatoire. Lors de ma thèse je me suis intéressé au rôle des ASICs dans la douleur et à l'influence des substances produites pendant l'inflammation sur leur activation par l'acidification. J'ai ainsi pu montrer chez le rat que la majorité des neurones sensoriels impliqués dans la douleur ont des canaux ASICs et que l'activation de ces canaux induit des potentiels d'action. Nous avons opéré des rats pour qu'ils présentent les symptômes d'une maladie chronique appelée neuropathie. La neuropathie se caractérise par une plus grande sensibilité à la douleur. Les rats neuropathiques présentent des changements de leurs canaux ASICs suggérant que ces canaux ont une peut-être un rôle dans la genèse ou les symptômes de cette maladie. J'ai aussi montré in vitro qu'un type d'enryme produit lors de l'inflammation et l'ischémie change les propriétés des ASICs. Ces résultats confirment un rôle des ASICs dans la douleur suggérant notamment un rôle jusque là encore non étudié dans la douleur neuropathique. De plus, ces résultats mettent en évidence une régulation des ASICs qui pourrait être importante si elle se confirmait in vivo de part les différents rôles des ASICs. Abstract Acid-sensing ion channels (ASICs) are members of the ENaC/Degenerin superfamily of ion channels. Their activation by a rapid extracellular acidification generates a transient and for some ASIC types also a sustained current mainly mediated by Na+. ASICs are expressed in the central (CNS) and in the peripheral (PNS) nervous system. In the CNS, ASICs have a putative role in learning, memory and in neuronal death after cerebral ischemia. In the PNS, ASICs have a putative role in nociception (acute and inflammatory pain) and in mechanotransduction. However, studies on ASIC function are somewhat controversial. Some studies suggest a crucial role of ASICs in transduction of acidification and in pain whereas other studies suggest rather a modulatory inhibitory role of ASICs in pain. Moreover, the basic property of ASICs, that they are activated only transiently is irreconcilable with the well-known property of nociception that the firing of nociceptive fibers demonstrated very little adaptation. Endogenous molecules may exist that can modulate ASIC properties. In a first part of my thesis, we addressed the question of the functional expression of ASICs in adult rat dorsal root ganglion (DRG) neurons. Our goal was to elucidate ASIC roles in DRG neurons. We characterized biophysical and pharmacological properties of ASIC currents using the patch-clamp technique in the whole-cell configuration. We observed that around 60% of small-diameter sensory neurons express ASICs currents. We described in these neurons three ASIC current types. Types 1 and 3 have properties compatible with a role of pH-sensor whereas type 2 is mainly activated by pH lower than pH6. Type 1 is mediated by ASIC1a homomultimers which are permeable to Ca 2+. We studied ASIC co-expression with nociceptor markers. The goal was to associate an ASIC current type with a potential function in sensory neurons. Most neurons expressing ASIC currents co-expressed nociceptor markers. However, a higher proportion of the neurons expressing type 1 was not associated with nociception compared to type 2 and -3. We completed this approach with current-clamp measurements of acidification-induced action potentials (APs). We showed that activation of ASICs in small-diameter neurons can induce APs. The probability of AP induction is positively correlated with the ASIC current density and the acidity of stimulation. Then, we used this classification as a tool to characterize the potential functional modulation of ASICs in the spared nerve injury model of neuropathy. This approach was completed by quantitative RT-PCR experiments. ASICs current expression was dramatically changed at the functional and transcriptional level in injured and non-injured small-diameter DRG neurons. In a second part of my thesis, following an initial screening of the effect of various substances secreted during inflammation and ischemia on ASIC current properties, we characterized in detail the modulation of ASICs, in particular of ASIC1 by serine proteases in a recombinant expression system as well as in hippocampal neurons. We showed that protease exposure shifts the pH dependence of ASIC1 activation and steady-state inactivation to more acidic pH. As a consequence, protease exposure leads to a decrease in the current response if ASIC1 is activated by a pH drop from pH 7.4. If, however, acidification occurs from a basal pH of 7, protease-exposed ASIC1a shows higher activity than untreated ASIC1a. We provided evidence that this bi-directional regulation of ASIC1a function also occurs in hippocampal neurons. Our results in DRG neurons suggest that some ASIC currents are involved in the transduction of peripheral acidification and pain. Furthermore, ASICs may participate to the processes leading to neuropathy. Some Ca 2+-permeable type 1 currents may be involved in neurosecretion. ASIC modulation by serine proteases may be physiologically relevant, allowing ASIC activation under sustained slightly acidic conditions.