77 resultados para Numerical Uncertainty
Resumo:
Rock slope instabilities such as rock slides, rock avalanche or deep-seated gravitational slope deformations are widespread in Alpine valleys. These phenomena represent at the same time a main factor that control the mountain belts erosion and also a significant natural hazard that creates important losses to the mountain communities. However, the potential geometrical and dynamic connections linking outcrop and slope-scale instabilities are often unknown. A more detailed definition of the potential links will be essential to improve the comprehension of the destabilization processes and to dispose of a more complete hazard characterization of the rock instabilities at different spatial scales. In order to propose an integrated approach in the study of the rock slope instabilities, three main themes were analysed in this PhD thesis: (1) the inventory and the spatial distribution of rock slope deformations at regional scale and their influence on the landscape evolution, (2) the influence of brittle and ductile tectonic structures on rock slope instabilities development and (3) the characterization of hazard posed by potential rock slope instabilities through the development of conceptual instability models. To prose and integrated approach for the analyses of these topics, several techniques were adopted. In particular, high resolution digital elevation models revealed to be fundamental tools that were employed during the different stages of the rock slope instability assessment. A special attention was spent in the application of digital elevation model for detailed geometrical modelling of past and potential instabilities and for the rock slope monitoring at different spatial scales. Detailed field analyses and numerical models were performed to complete and verify the remote sensing approach. In the first part of this thesis, large slope instabilities in Rhone valley (Switzerland) were mapped in order to dispose of a first overview of tectonic and climatic factors influencing their distribution and their characteristics. Our analyses demonstrate the key influence of neotectonic activity and the glacial conditioning on the spatial distribution of the rock slope deformations. Besides, the volumes of rock instabilities identified along the main Rhone valley, were then used to propose the first estimate of the postglacial denudation and filling of the Rhone valley associated to large gravitational movements. In the second part of the thesis, detailed structural analyses of the Frank slide and the Sierre rock avalanche were performed to characterize the influence of brittle and ductile tectonic structures on the geometry and on the failure mechanism of large instabilities. Our observations indicated that the geometric characteristics and the variation of the rock mass quality associated to ductile tectonic structures, that are often ignored landslide study, represent important factors that can drastically influence the extension and the failure mechanism of rock slope instabilities. In the last part of the thesis, the failure mechanisms and the hazard associated to five potential instabilities were analysed in detail. These case studies clearly highlighted the importance to incorporate different analyses and monitoring techniques to dispose of reliable and hazard scenarios. This information associated to the development of a conceptual instability model represents the primary data for an integrated risk management of rock slope instabilities. - Les mouvements de versant tels que les chutes de blocs, les éboulements ou encore les phénomènes plus lents comme les déformations gravitaires profondes de versant représentent des manifestations courantes en régions montagneuses. Les mouvements de versant sont à la fois un des facteurs principaux contrôlant la destruction progressive des chaines orogéniques mais aussi un danger naturel concret qui peut provoquer des dommages importants. Pourtant, les phénomènes gravitaires sont rarement analysés dans leur globalité et les rapports géométriques et mécaniques qui lient les instabilités à l'échelle du versant aux instabilités locales restent encore mal définis. Une meilleure caractérisation de ces liens pourrait pourtant représenter un apport substantiel dans la compréhension des processus de déstabilisation des versants et améliorer la caractérisation des dangers gravitaires à toutes les échelles spatiales. Dans le but de proposer un approche plus globale à la problématique des mouvements gravitaires, ce travail de thèse propose trois axes de recherche principaux: (1) l'inventaire et l'analyse de la distribution spatiale des grandes instabilités rocheuses à l'échelle régionale, (2) l'analyse des structures tectoniques cassantes et ductiles en relation avec les mécanismes de rupture des grandes instabilités rocheuses et (3) la caractérisation des aléas rocheux par une approche multidisciplinaire visant à développer un modèle conceptuel de l'instabilité et une meilleure appréciation du danger . Pour analyser les différentes problématiques traitées dans cette thèse, différentes techniques ont été utilisées. En particulier, le modèle numérique de terrain s'est révélé être un outil indispensable pour la majorité des analyses effectuées, en partant de l'identification de l'instabilité jusqu'au suivi des mouvements. Les analyses de terrain et des modélisations numériques ont ensuite permis de compléter les informations issues du modèle numérique de terrain. Dans la première partie de cette thèse, les mouvements gravitaires rocheux dans la vallée du Rhône (Suisse) ont été cartographiés pour étudier leur répartition en fonction des variables géologiques et morphologiques régionales. En particulier, les analyses ont mis en évidence l'influence de l'activité néotectonique et des phases glaciaires sur la distribution des zones à forte densité d'instabilités rocheuses. Les volumes des instabilités rocheuses identifiées le long de la vallée principale ont été ensuite utilisés pour estimer le taux de dénudations postglaciaire et le remplissage de la vallée du Rhône lié aux grands mouvements gravitaires. Dans la deuxième partie, l'étude de l'agencement structural des avalanches rocheuses de Sierre (Suisse) et de Frank (Canada) a permis de mieux caractériser l'influence passive des structures tectoniques sur la géométrie des instabilités. En particulier, les structures issues d'une tectonique ductile, souvent ignorées dans l'étude des instabilités gravitaires, ont été identifiées comme des structures très importantes qui contrôlent les mécanismes de rupture des instabilités à différentes échelles. Dans la dernière partie de la thèse, cinq instabilités rocheuses différentes ont été étudiées par une approche multidisciplinaire visant à mieux caractériser l'aléa et à développer un modèle conceptuel trois dimensionnel de ces instabilités. A l'aide de ces analyses on a pu mettre en évidence la nécessité d'incorporer différentes techniques d'analyses et de surveillance pour une gestion plus objective du risque associée aux grandes instabilités rocheuses.
Resumo:
Gel electrophoresis allows one to separate knotted DNA (nicked circular) of equal length according to the knot type. At low electric fields, complex knots, being more compact, drift faster than simpler knots. Recent experiments have shown that the drift velocity dependence on the knot type is inverted when changing from low to high electric fields. We present a computer simulation on a lattice of a closed, knotted, charged DNA chain drifting in an external electric field in a topologically restricted medium. Using a Monte Carlo algorithm, the dependence of the electrophoretic migration of the DNA molecules on the knot type and on the electric field intensity is investigated. The results are in qualitative and quantitative agreement with electrophoretic experiments done under conditions of low and high electric fields.
Resumo:
River bifurcations are key nodes within braided river systems controlling the flow and sediment partitioning and therefore the dynamics of the river braiding process. Recent research has shown that certain geometrical configurations induce instabilities that lead to downstream mid-channel bar formation and the formation of bifurcations. However, we currently have a poor understanding of the flow division process within bifurcations and the flow dynamics in the downstream bifurcates, both of which are needed to understand bifurcation stability. This paper presents results of a numerical sensitivity experiment undertaken using computational fluid dynamics (CFD) with the purpose of understanding the flow dynamics of a series of idealized bifurcations. A geometric sensitivity analysis is undertaken for a range of channel slopes (0.005 to 0.03), bifurcation angles (22 degrees to 42 degrees) and a restricted set of inflow conditions based upon simulating flow through meander bends with different curvature on the flow field dynamics through the bifurcation. The results demonstrate that the overall slope of the bifurcation affects the velocity of flow through the bifurcation and when slope asymmetry is introduced, the flow structures in the bifurcation are modified. In terms of bifurcation evolution the most important observation appears to be that once slope asymmetry is greater than 0.2 the flow within the steep bifurcate shows potential instability and the potential for alternate channel bar formation. Bifurcation angle also defines the flow structures within the bifurcation with an increase in bifurcation angle increasing the flow velocity down both bifurcates. However, redistributive effects of secondary circulation caused by upstream curvature can very easily counter the effects of local bifurcation characteristics. Copyright (C) 2011 John Wiley & Sons, Ltd.
Resumo:
INTRODUCTION: The importance of the micromovements in the mechanism of aseptic loosening is clinically difficult to evaluate. To complete the analysis of a series of total knee arthroplasties (TKA), we used a tridimensional numerical model to study the micromovements of the tibial implant. MATERIAL AND METHODS: Fifty one patients (with 57 cemented Porous Coated Anatomic TKAs) were reviewed (mean follow-up 4.5 year). Radiolucency at the tibial bone-cement interface was sought on the AP radiographs and divided in 7 areas. The distribution of the radiolucency was then correlated with the axis of the lower limb as measured on the orthoradiograms. The tridimensional numerical model is based on the finite element method. It allowed the measurement of the cemented prosthetic tibial implant's displacements and the micromovements generated at bone-ciment interface. A total load (2000 Newton) was applied at first vertically and asymetrically on the tibial plateau, thereby simulating an axial deviation of the lower limbs. The vector's posterior inclination then permitted the addition of a tangential component to the axial load. This type of effort is generated by complex biomechanical phenomena such as knee flexion. RESULTS: 81 per cent of the 57 knees had a radiolucent line of at least 1 mm, at one or more of the tibial cement-epiphysis jonctional areas. The distribution of these lucent lines showed that they came out more frequently at the periphery of the implant. The lucent lines appeared most often under the unloaded margin of the tibial plateau, when axial deviation of lower limbs was present. Numerical simulations showed that asymetrical loading on the tibial plateau induced a subsidence of the loaded margin (0-100 microns) and lifting off at the opposite border (0-70 microns). The postero-anterior tangential component induced an anterior displacement of the tibial implant (160-220 microns), and horizontal micromovements with non homogenous distribution at the bone-ciment interface (28-54 microns). DISCUSSION: Comparison of clinical and numerical results showed a relation between the development of radiolucent lines and the unloading of the tibial implant's margin. The deleterious effect of lower limbs' axial deviation is thereby proven. The irregular distribution of lucent lines under the tibial plateau was similar of the micromovements' repartition at the bone-cement interface when tangential forces were present. A causative relation between the two phenomenaes could not however be established. Numerical simulation is a truly useful method of study; it permits to calculate micromovements which are relative, non homogenous and of very low amplitude. However, comparative clinical studies remain as essential to ensure the credibility of results.
Resumo:
AIM: Specific factors responsible for interindividual variability should be identified and their contribution quantified to improve the usefulness of biological monitoring. Among others, age is an easily identifiable determinant, which could play an important impact on biological variability. MATERIALS AND METHODS: A compartmental toxicokinetic model developed in previous studies for a series of metallic and organic compounds was applied to the description of age differences. Young male physiological and metabolic parameters, based on Reference Man information, were taken from preceding studies and were modified to take into account age based on available information about age differences. RESULTS: Numerical simulation using the kinetic model with the modified parameters indicates in some cases important differences due to age. The expected changes are mostly of the order of 10-20%, but differences up to 50% were observed in some cases. CONCLUSION: These differences appear to depend on the chemical and on the biological entity considered. Further work should be done to improve our estimates of these parameters, by considering for example uncertainty and variability in these parameters. [Authors]
Resumo:
Regulatory gene networks contain generic modules, like those involving feedback loops, which are essential for the regulation of many biological functions (Guido et al. in Nature 439:856-860, 2006). We consider a class of self-regulated genes which are the building blocks of many regulatory gene networks, and study the steady-state distribution of the associated Gillespie algorithm by providing efficient numerical algorithms. We also study a regulatory gene network of interest in gene therapy, using mean-field models with time delays. Convergence of the related time-nonhomogeneous Markov chain is established for a class of linear catalytic networks with feedback loops.
Resumo:
Due to the advances in sensor networks and remote sensing technologies, the acquisition and storage rates of meteorological and climatological data increases every day and ask for novel and efficient processing algorithms. A fundamental problem of data analysis and modeling is the spatial prediction of meteorological variables in complex orography, which serves among others to extended climatological analyses, for the assimilation of data into numerical weather prediction models, for preparing inputs to hydrological models and for real time monitoring and short-term forecasting of weather.In this thesis, a new framework for spatial estimation is proposed by taking advantage of a class of algorithms emerging from the statistical learning theory. Nonparametric kernel-based methods for nonlinear data classification, regression and target detection, known as support vector machines (SVM), are adapted for mapping of meteorological variables in complex orography.With the advent of high resolution digital elevation models, the field of spatial prediction met new horizons. In fact, by exploiting image processing tools along with physical heuristics, an incredible number of terrain features which account for the topographic conditions at multiple spatial scales can be extracted. Such features are highly relevant for the mapping of meteorological variables because they control a considerable part of the spatial variability of meteorological fields in the complex Alpine orography. For instance, patterns of orographic rainfall, wind speed and cold air pools are known to be correlated with particular terrain forms, e.g. convex/concave surfaces and upwind sides of mountain slopes.Kernel-based methods are employed to learn the nonlinear statistical dependence which links the multidimensional space of geographical and topographic explanatory variables to the variable of interest, that is the wind speed as measured at the weather stations or the occurrence of orographic rainfall patterns as extracted from sequences of radar images. Compared to low dimensional models integrating only the geographical coordinates, the proposed framework opens a way to regionalize meteorological variables which are multidimensional in nature and rarely show spatial auto-correlation in the original space making the use of classical geostatistics tangled.The challenges which are explored during the thesis are manifolds. First, the complexity of models is optimized to impose appropriate smoothness properties and reduce the impact of noisy measurements. Secondly, a multiple kernel extension of SVM is considered to select the multiscale features which explain most of the spatial variability of wind speed. Then, SVM target detection methods are implemented to describe the orographic conditions which cause persistent and stationary rainfall patterns. Finally, the optimal splitting of the data is studied to estimate realistic performances and confidence intervals characterizing the uncertainty of predictions.The resulting maps of average wind speeds find applications within renewable resources assessment and opens a route to decrease the temporal scale of analysis to meet hydrological requirements. Furthermore, the maps depicting the susceptibility to orographic rainfall enhancement can be used to improve current radar-based quantitative precipitation estimation and forecasting systems and to generate stochastic ensembles of precipitation fields conditioned upon the orography.
Resumo:
Coordination games are important to explain efficient and desirable social behavior. Here we study these games by extensive numerical simulation on networked social structures using an evolutionary approach. We show that local network effects may promote selection of efficient equilibria in both pure and general coordination games and may explain social polarization. These results are put into perspective with respect to known theoretical results. The main insight we obtain is that clustering, and especially community structure in social networks has a positive role in promoting socially efficient outcomes.
Resumo:
The flow of two immiscible fluids through a porous medium depends on the complex interplay between gravity, capillarity, and viscous forces. The interaction between these forces and the geometry of the medium gives rise to a variety of complex flow regimes that are difficult to describe using continuum models. Although a number of pore-scale models have been employed, a careful investigation of the macroscopic effects of pore-scale processes requires methods based on conservation principles in order to reduce the number of modeling assumptions. In this work we perform direct numerical simulations of drainage by solving Navier-Stokes equations in the pore space and employing the Volume Of Fluid (VOF) method to track the evolution of the fluid-fluid interface. After demonstrating that the method is able to deal with large viscosity contrasts and model the transition from stable flow to viscous fingering, we focus on the macroscopic capillary pressure and we compare different definitions of this quantity under quasi-static and dynamic conditions. We show that the difference between the intrinsic phase-average pressures, which is commonly used as definition of Darcy-scale capillary pressure, is subject to several limitations and it is not accurate in presence of viscous effects or trapping. In contrast, a definition based on the variation of the total surface energy provides an accurate estimate of the macroscopic capillary pressure. This definition, which links the capillary pressure to its physical origin, allows a better separation of viscous effects and does not depend on the presence of trapped fluid clusters.
Resumo:
Quantifying the spatial configuration of hydraulic conductivity (K) in heterogeneous geological environments is essential for accurate predictions of contaminant transport, but is difficult because of the inherent limitations in resolution and coverage associated with traditional hydrological measurements. To address this issue, we consider crosshole and surface-based electrical resistivity geophysical measurements, collected in time during a saline tracer experiment. We use a Bayesian Markov-chain-Monte-Carlo (McMC) methodology to jointly invert the dynamic resistivity data, together with borehole tracer concentration data, to generate multiple posterior realizations of K that are consistent with all available information. We do this within a coupled inversion framework, whereby the geophysical and hydrological forward models are linked through an uncertain relationship between electrical resistivity and concentration. To minimize computational expense, a facies-based subsurface parameterization is developed. The Bayesian-McMC methodology allows us to explore the potential benefits of including the geophysical data into the inverse problem by examining their effect on our ability to identify fast flowpaths in the subsurface, and their impact on hydrological prediction uncertainty. Using a complex, geostatistically generated, two-dimensional numerical example representative of a fluvial environment, we demonstrate that flow model calibration is improved and prediction error is decreased when the electrical resistivity data are included. The worth of the geophysical data is found to be greatest for long spatial correlation lengths of subsurface heterogeneity with respect to wellbore separation, where flow and transport are largely controlled by highly connected flowpaths.